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1 Adiabatic approximation

The adiabatic approximation is a technique used in quantum mechanics to solve the time-
dependent Schrödinger equation. Its basic assumption is that the parameters of the hamil-
tonian change slowly enough that the wavefunction of the system can be assumed to remain
in its instantaneous eigenstate. In other words, the evolution of the parameters of the hamil-
tonian occurs on a time scale, e.g., a period Text, that is much longer than the time scale of
the evolution of its internal variables, e.g., a period Tint. Text ≫ Tint defines the condition
of adiabatic evolution of the control parameters.

In this spirit, we search for solutions of the time-dependent Schrödinger equation

iℏ
∂

∂t
|Ψ(t)⟩ = H |Ψ(t)⟩ (1)

using the following ansatz:

|Ψ(t)⟩ =
∑
n

Ψn(t) =
∑
n

cn(t) |ψn(t)⟩ (2)

The wavefunctions ψn(t) are defined as the instantaneous solutions of the equation

H(t)ψn(t) = En(t)ψn(t) (3)

where we assume that ψn(t) constitute an instantaneous orthonormal basis.

⟨ψk(t)|ψn(t)⟩ = δk,n,∀t (4)

We plug our ansatz into the time-dependent Schrödinger equation, finding

iℏ
∑
n

(
ċn(t) |ψn(t)⟩+ cn(t) |ψ̇n(t)⟩

)
=
∑
n

cn(t)En(t) |ψn(t)⟩ (5)

We project on the components ⟨ψk(t)|, to obtain

iℏċk(t) = ck(t)Ek(t)− iℏ
∑
n

⟨ψk(t)|ψ̇n(t)⟩ cn(t) (6)

= ck(t)
(
Ek(t)− iℏ ⟨ψk(t)|ψ̇k(t)⟩

)
− iℏ

∑
n̸=k

⟨ψk(t)|ψ̇n(t)⟩ cn(t)︸ ︷︷ ︸
coupling terms

(7)

In the adiabatic approximation, we neglect the coupling terms. This implements our as-
sumption that the parameters of the hamiltonian vary slowly enough that the wavefunction
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of the system can be assumed to stay in its instantaneous eigenstate. In this approximation,
we assume that the products ⟨ψk(t)|ψ̇n(t)⟩ are negligible. Thus, our evolution is reduced to

iℏċk(t) ≈
(
Ek(t)− iℏ ⟨ψk(t)|ψ̇k(t)⟩

)
ck(t). (8)

The solution is found as

ck(t) = exp

{
1

iℏ

∫ t

0

(
Ek(t

′)− iℏ ⟨ψk(t
′)|ψ̇k(t

′)⟩
)

dt′
}

(9)

The evolution of the wavefunctions can be written in a compact form as

Ψn(t) ≈ eiθn(t)eiγn(t)ψn(t) (10)

where

θn(t) = −1

ℏ

∫ t

0
En(t

′)dt′ (11)

is the standard phase evolution of an eigenstate, also known as the dynamical phase. The
second factor contains the phase

γn(t) =

∫ t

0
i ⟨ψn(t

′)|ψ̇n(t
′)⟩ dt′ (12)

that is known as the geometric phase or Berry phase. The term geometric phase somehow
suggests that this quantity is determined by the geometric properties of the wavefunctions.
In the next section we will elaborate on this concept.

2 Geometric phase

As introduced earlier, we consider hamiltonians that are characterised by a set of parameters
k1, ... , kN that constitute a vector space k = (k1, k2, ... , kN ) (configuration space). We have
a solution of the following equation for all values of the parameters:

H(k) |ψn(k)⟩ = En(k) |ψn(k)⟩ (13)

where ψn(k) constitute an orthonormal set. We consider a time-dependent evolution in the
configuration space described by the path

k(t) = (k1(t), ... , kN (t)) (14)

This defines a time-dependent hamiltonian H [k(t)] that can be solved with the method of
the adiabatic approximation. According to our previous analysis, an adiabatic evolution
will be associated with the acquisition of a geometric phase given by

γn(t) =

∫ t

0
i ⟨ψn

(
k(t′)

)
| d
dt′
ψn

(
k(t′)

)
⟩ dt′ = (15)
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However, we recall that

d
dt
ψn (k(t)) =

d
dt
ψn (k1(t), ... , kN (t)) = (16)

=
∂ψn

∂k1

dk1
dt

+ ... +
∂ψn

∂kN

dkN
dt

= ∇kψn · dk
dt

(17)

Therefore we can write

γn(t) =

∫ t

0
i ⟨ψn

(
k(t′)

)
|∇k|ψn

(
k(t′)

)
⟩ · dk

dt′
dt′ (18)

By integrating around a closed loop C, we find

γn(k) =

∮
C
i ⟨ψn(k)|∇k|ψn(k)⟩ · dk (19)

The quantity

An(k) = i ⟨ψn(k)|∇k|ψn(k)⟩ (20)

is called the Berry connection. It relates to the overlap between wavefunctions in configu-
ration space separated by an infinitesimal distance, via the equation

⟨ψn(k)|∇k|ψn(k)⟩ = lim
δk→0

⟨ψk|ψk+δk⟩ − ⟨ψk|ψk⟩
δk

= −iAk. (21)

When studying systems characterised by a three-dimensional configuration space (e.g. the
momentum space associated with the electronic wavefunctions of a periodic solid), we can
make use of Stokes’ theorem. In this case, the contour integral of the Berry connection can
be written as a surface integral:∮

C
An(k) · dk =

∫∫
S
∇k ×An(k) · d2k . (22)

The quantity

Bn(k) = ∇k ×An(k) (23)

is called the Berry curvature, and represents the flux that penetrates the surface area
enclosed by the contour C.
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3 Example 1: spin 1/2 in a rotating magnetic field

As a first concrete example of the acquisition of a geometric phase in the adiabatic approx-
imation, we consider a spin 1/2 system, immersed in an external time-dependent magnetic
field B⃗

H(t) = −µ
2
σ⃗ · B⃗(t) (24)

where the magnetic field B⃗ depends on time:

B⃗(t) = B0[sin θ cosωt x̂+ sin θ sinωt ŷ + cos θ ẑ] (25)

namely, it is periodic, such that B⃗
(
t+ 2π

ω

)
= B⃗(t). Upon a complete field rotation, we will

show that in the adiabatic limit (ω ≪ µB0) the wavefunctions acquires a geometric phase
given by:

⟨ψ±
(
t =

2π

ω

)
| |ψ±(t = 0

)
⟩ = e±i 2π

ω
µB0︸ ︷︷ ︸

dynamical phase

e−iπ(1±cos θ)︸ ︷︷ ︸
geometric phase

(26)

We will now proceed with this important calculation using a direct diagonalisation of the
hamiltonian and the application of the results of the adiabatic approximation. We calcu-
lated previously that the geometric phase can be found using:

γn = i

∫
C
⟨n, B⃗|∇B |n, B⃗⟩ · dB⃗ (27)

The integral being performed over a contour C defined by the closed path of the magnetic
field. The wavefunction then reads:

|ψ(t)⟩ = exp

{
− i

ℏ

∫ 2π
ω

0
E(t′)dt′

}
︸ ︷︷ ︸

dynamical phase

eiγn(t)︸ ︷︷ ︸
geometric phase

|n, B⃗⟩ (28)

The "instantaneous" eigenvalues of the hamiltonian H can be found solving the equation:

det{E1 −H(t)} = 0 (29)

The hamiltonian can be written as a matrix operator in the spin space as:

H(t) = −µB
2

(σxBx + σyBy + σzBz) = (30)

−µB
2

[(
0 1
1 0

)
sin θ cosωtx̂+

(
0 −i
i 0

)
sin θ sinωtŷ +

(
1 0
0 −1

)
cos θẑ

]
(31)
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where σi are the Pauli matrices. The basis in the spin space is represented by the two
vectors spin up and spin down states:

|+⟩ =
(
1
0

)
(32)

|−⟩ =
(
0
1

)
(33)

Therefore, the matrix form of the H(t) in this basis following from eq.31:

H(t) =
µB

2

(
− cos θ − sin θ cosωt+ i sin θ sinωt

− sin θ cosωt− i sin θ sinωt cos θ

)
= (34)

= −µB
2

(
cos θ sin θe−iωt

sin θeiωt − cos θ

)
(35)

For this problem, the eigenvalues are:

E± = ±µB
2

(36)

This can be readily seen by working out the determinant det{H(t)} = −µ2B2

4 and the trace
Tr{H(t)} = 0 of the matrix seen above 1. The eigenvectors are:

v⃗+ =

(
− sin (θ/2)
cos (θ/2)eiωt

)
v⃗− =

(
cos (θ/2)

sin (θ/2)eiωt

)
To find these we have to solve the matrix equation:

(H(t)− E±1) · v⃗± = 0 (37)

We look for eigenvectors in the form:

v⃗+ =

(
x+
y+

)
v⃗− =

(
x−
y−

)

where x±, y± ∈ C are complex numbers. For the positive eigenvalue the matrix problem
to solve is thus: (

2 cos2 θ
2 2 sin θ

2 cos
θ
2e

−iωt

2 cos θ
2 sin

θ
2e

iωt 2 sin2 θ
2

)(
x+
y+

)
=

(
0
0

)
(38)

1We remind the reader that since every hermitian matrix can be expressed in an orthonormal basis of
its eigenstates, and determinants are traces are invariant under similarity transformations, the determinant
of the matrix found is the product of the two eigenvalues, the trace being their sum instead.
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This leads to the two coupled equations:{
cos2 θ

2x+ = − sin θ
2 cos

θ
2e

−iωty+

cos θ
2 sin

θ
2e

iωtx+ = − sin2 θ
2y+

(39)

To solve the system we can use polar notation for the complex variables:

x+ = Rx+e
iϕx+

y+ = Ry+e
iϕy+

So the two complex equations written above can be recast as:Rx+

cos θ
2

sin θ
2

= Ry+

ϕx+ + ωt = ϕy+ + π
(40)

Imposing the normalisation condition gives:

R2
x+

+R2
y+ = R2

x+

(
1 +

cos2 θ
2

sin2 θ
2

)
= 1 (41)

This in turn gives:

Rx+ = sin
θ

2

Ry+ = cos
θ

2

We can arbitrarily choose ϕx+ = π (a common phase factor between x+ and y+ could easily
be factored out of the vector, and it would not affect the result), so the phases result:

ϕx+ = π

ϕy+ = ωt

Whence:

v⃗+ =

(
− sin θ

2

cos θ
2e

iωt

)
(42)

The case for the negative eigenvalue is completely analogous, the matrix problem to solve
in this case is: (

−2 sin2 θ
2 2 sin θ

2 cos
θ
2e

−iωt

2 cos θ
2 sin

θ
2e

iωt −2 cos2 θ
2

)(
x−
y−

)
=

(
0
0

)
(43)

which leads to the following radius/phases relations:Rx− =
cos θ

2

sin θ
2

Ry−

ϕx− = ϕy− − ωt
(44)
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In this case applying the normalisation condition and imposing ϕx− = 0 we find:

v⃗− =

(
sin θ

2

cos θ
2e

−iωt

)
(45)

Let’s now return to the original problem of calculating the contributions to the phase
of the wavefunction |ψ⟩. The dynamical phase is simply given by:

i

ℏ

∫ 2π
ω

0
E±(t

′)dt′ =
i

ℏ

∫ 2π
ω

0
±µB0

2
dt′ = ± iπµB0

ℏω
(46)

Now let us turn to the geometric phase:

γn = i

∫
C
⟨n, B⃗|∇B |n, B⃗⟩ · dB⃗ (47)

This calculation is best carried out in spherical coordinates, the gradient operator thus
takes the form:

∇ = r̂
∂

∂r
+

1

r
θ̂
∂

∂θ
+

1

r sin θ
ϕ̂
∂

∂ϕ
(48)

Since the coordinates are the component of the magnetic field, it follows that ϕ = ωt and
r = B0. So the eigenvectors gradient with respect to the field can be written as:

∇B v⃗± =
(

∂
∂B0

1
B0

∂
∂θ

1
B0 sin θ

∂
∂ωt

)
v⃗± (49)

The gradient must be performed for each spin component of the eigenvectors:

∇B v⃗+ =
1

2B0

(
− cos θ

2 θ̂

− sin θ
2e

iωtθ̂ + i
sin θ

2

eiωtϕ̂

)
(50)

∇B v⃗− =
1

2B0

(
− sin θ

2 θ̂

cos θ
2e

iωtθ̂ + i
cos θ

2

eiωtϕ̂

)
(51)

The diagonal matrix elements of the gradient operator are then:

⟨v⃗+|∇B |v⃗+⟩ =
1

2B0

(
− sin θ

2 cos θ
2e

−iωt
)( − cos θ

2 θ̂

− sin θ
2e

iωtθ̂ + i
sin θ

2

eiωtϕ̂

)
= (52)

=
1

2B0
cot

θ

2
ϕ̂ =

(
0 0 i

2B0
cot θ

2

)
(53)

and:

⟨v⃗−|∇B |v⃗−⟩ =
1

2B0

(
cos θ

2 sin θ
2e

−iωt
)( − sin θ

2 θ̂

cos θ
2e

iωtθ̂ + i
cos θ

2

eiωtϕ̂

)
= (54)

=
1

2B0
tan

θ

2
ϕ̂ =

(
0 0 i

2B0
tan θ

2

)
(55)
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The integral in eq.27 can be carried out by means of a variable change. The gradient
operator expectation value only depends on ϕ, which in turn in proportional to time. For
this reason C can be chosen as a circle (radius B0) revolving around the ϕ coordinate. So
we can make a variable substitution from ϕ to time t. The time derivative of the magnetic
field is:

dB⃗
/
dt = B0ω sin θ(− sinωt x̂+ cosωt ŷ) = B0ω sin θ ϕ̂ (56)

This latter is also oriented along ϕ̂, so the integral gets even simpler:

γv+ =

∫ ϕ=2π,B=B0

ϕ=0,B=B0

1

2B0
cot

θ

2
ϕ̂ · dB⃗ =

∫ t= 2π
ω

t=0

1

2B0
cot

θ

2
ϕ̂ · dB⃗

dt
dt = (57)

γv+ = i

∫ 2π
ω

0

i

2B0
cot

θ

2
B0ω sin θdt = −π cot (θ/2) sin θ = −π(1 + cos θ) (58)

and similarly:

γv− = i

∫ 2π
ω

0

i

2B0
tan

θ

2
B0ω sin θdt = −π tan (θ/2) sin θ = −π(1− cos θ) (59)

4 Anomalous transport

We will now give a brief account of the basic description of transport phenomena associated
with a geometric structure of the electronic wavefunctions. In a curved space, the traditional
derivative operation is not gauge-invariant. Consequently, a gauge-covariant derivative must
be introduced:

∇k → ∇k − iAk. (60)

On a momentum-space basis, the gauge-covariant position operators are expressed as

x̂ = ∇kx − iAkx

ŷ = ∇ky − iAky . (61)

We can characterise electronic transport by taking into account the effects of an electric field
Ĥ ′ = −eExx̂ within the adiabatic approximation. This leads to an additional contribution
to the time evolution of the position operators:〈

dŷ

dt

〉
=
i

ℏ

[
Ĥ ′, ŷ

]
= − ieEx

ℏ
[x̂, ŷ]

=
eEx
ℏ

(
∂Aky

∂kx
− ∂Akx

∂ky

)
=
e

ℏ
ExBz

k = vAH
y (62)
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This additional contribution is called the anomalous velocity and it is responsible for a
number of unconventional transport and spin dynamics phenomena. Importantly, these
transport phenomena manifest in a perpendicular direction with respect to the external
electric field. Therefore, we define the anomalous transverse conductance as

σAH
xy = −vAH

y e/Ex. (63)

We can calculate it by integrating over all occupied states throughout the Brillouin zone
(BZ) and summing over all electronic bands n the Berry curvature Bz

n, weighted by the
Fermi-Dirac distribution: f(ϵnk)

σAH
xy = − e2

2πh

∑
n

∫∫
BZ
f(ϵnk)Bz

n d
2k . (64)

The dispersion relation ϵk of band n enters this expression via the Fermi-Dirac distribution.
We can now recognise that the observation of transport phenomena related to the ge-

ometric structure of electronic wavefunctions necessitates the existence of a finite Berry
curvature integration over the Brillouin zone. This requirement is subject to stringent sym-
metry restrictions. Systems with time-reversal symmetry have a Berry curvature that is
an odd function of k, resulting in a zero integration throughout the Brillouin zone. In
systems with time-reversal symmetry, anomalous transport in the sense described here is
only possible in solids with very low crystal symmetries.

At zero temperature and for a single fully occupied band n, equation (64) simplifies to

σAH
xy,n = − e2

2πh

∫∫
BZ

Bz
n d

2k

= −e
2

h
Cn. (65)

The Chern number of band n, denoted as Cn, is a topological quantity that gives a quan-
tised contribution to the anomalous Hall conductance. For a fully occupied band (Chern
insulator), the anomalous Hall conductance is quantised. In the case of partially occupied
bands i.e., Fermi liquids, the conductance is not quantised as a result of contributions from
states at the Fermi energy.

In two dimensions, for a given (Bloch) wavefunction ψ, the Berry curvature can be
written as

Bz = ∇kxAky −∇kyAkx = i ⟨∇kxψ|∇kyψ⟩ − i ⟨∇kyψ|∇kxψ⟩
= −i

[
|∇kψ⟩ × ⟨∇kψ|

]
z
. (66)

For two wavefunctions ψm and ψn, we can write
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〈
ψm

∣∣∣∇∣∣∣Ĥψn

〉
= ϵn ⟨ψm|∇ψn⟩+ ⟨ψm|ψn⟩∇ϵn

= ⟨ψm|∇Ĥ|ψn⟩+ ⟨ψm|Ĥ|∇ψn⟩
= ⟨ψm|∇Ĥ|ψn⟩+ ϵm ⟨ψm|∇ψn⟩ , (67)

which gives

⟨ψm|∇ψn⟩ =
⟨ψm|∇Ĥ|ψn⟩
ϵn − ϵm

. (68)

Then the total Berry curvature of band n is given by

Bn
k = −i

∑
m ̸=n

[
⟨ψm|∇kψn⟩ × ⟨∇kψn|ψm⟩

]
z

= −i
∑
m ̸=n

[
⟨ψm|∇kĤ|ψn⟩ × ⟨ψn|∇kĤ|ψm⟩

]
z

(ϵm − ϵn)
2

= −2
∑
m̸=n

Im
⟨ψm|∇kxĤ|ψn⟩ ⟨ψn|∇kyĤ|ψm⟩

(ϵm − ϵn)
2 (69)

which illustrates that when two bands m and n are nearly degenerate, the Berry curvature
is enhanced. Additionally, since equation (69) is odd with respect to permuting m and n,
the sum over all bands

∑
n Bn

k, as well as the sum over all Chern numbers
∑

nCn, returns
zero.

5 Berry curvature of a two-level system

We will now consider a case of a two-level system with a k-dependent spin texture.

H(k) = d(k) · σ = d1σx + d2σy + d3σz (70)

with
d = |d| =

√
d21 + d22 + d23 (71)

and

σx =

(
0 1
1 0

)
(72)

σy =

(
0 −i
i 0

)
(73)

σz =

(
1 0
0 −1

)
. (74)
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As derived above, the eigenvalues are

E± = ±|d|. (75)

The eigenvectors ψ±, are found by solving the equation[
d3 + d d1 − id2
d1 + id2 −d3 + d

] [
ψ−
a

ψ−
b

]
=

[
0
0

]
(76)

We make the ansatz

ψ− =

[
ψ−
a

ψ−
b

]
= N

[
d3 − d
d1 + id2

]
(77)

The validity of this choice can be verified by direct computation:

(d3 − d)(d3 + d) + (d1 − id2)(d1 + id2) = d23 − d2 + d21 + d22 = 0 (78)

(d1 + id2)(d3 − d) + (−d3 + d)(d1 + id2) = (d1 + id2)(d3 − d)− (d3 − d)(d1 + id2) = 0 (79)

The normalisation coefficient N is found such as | ⟨ψ−|ψ−⟩ |2 = 1

N2[(d3 − d)2 + d21 + d22] = 1 (80)

N2[d23 + d2 − 2d3d+ d21 + d22] = N2[2d2 − 2d3d] = 1 (81)

N =
1√

2d(d− d3)
(82)

ψ− =
1√

2d(d− d3)

[
d3 − d
d1 + id2

]
(83)

Similarly, we find

ψ+ =
1√

2d(d+ d3)

[
d3 + d
d1 + id2

]
(84)

We compute the Berry connection, using

A±(k) = i ⟨ψ±(k)|∇k|ψ±(k)⟩ (85)

We start with

∇k|ψ±⟩ = ∇k
1√

2d(d± d3)

[
d3 ± d
d1 + id2

]
= (86)

=
1√

2d(d± d3)

[
∇k(d3 ± d)
∇k(d1 + id2)

]
− ∇kd(d± d3)

[2d(d± d3)]3/2

[
d3 ± d
d1 + id2

]
(87)
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⟨ψ±(k)|∇k|ψ±(k)⟩ = 1

2d(d± d3)
[(d± d3)∇k(d± d3) + (d1 − id2)∇k(d1 + id2)]

− 1

[2d(d± d3)]2
∇kd(d± d3)[(d± d3)

2 + d21 + d22]

We simplify the first term

[(d± d3)∇k(d± d3) + (d1 − id2)∇k(d1 + id2)] =

= d3∇kd3 + d∇kd± d∇kd3 ± d3∇kd+ d1∇kd1 + d2∇kd2 − id2∇kd1 + id1∇kd2

=
1

2
∇kd

2
3 +

1

2
∇kd

2 ±∇k(d3d) +
1

2
∇2

kd
2
1 +

1

2
∇kd

2
2 − id2∇kd1 + id1∇kd2

= ∇kd
2 ±∇k(d3d)− id2∇kd1 + id1∇kd2

= ∇kd(d± d3)− id2∇kd1 + id1∇kd2

We can then write the simplified expression

⟨ψ±(k)|∇k|ψ±(k)⟩ = 1

2d(d± d3)
[∇kd(d± d3)− id2∇kd1 + id1∇kd2]

− 1

[2d(d± d3)]2
∇kd(d± d3)[2d

2 ± 2d3d]

=
1

2d(d± d3)
(−id2∇kd1 + id1∇kd2)

Therefore, the Berry connection is

A±(k) =
d2∇kd1 − d1∇kd2

2d(d± d3)
(88)

For a two-dimensional system we can write the (z component) Berry curvature as

B±
z = ∇kxA±

ky
−∇kyA±

kx
(89)

leading to2

B+
z =

1

2d3
[−d1(∇kxd2∇kyd3 −∇kxd3∇kyd2)

+d2(∇kxd1∇kyd3 −∇kxd3∇kyd1)

−d3(∇kxd1∇kyd2 −∇kxd2∇kyd1)]

= − 1

2d3
d · (∇kxd×∇kyd)

= −1

2
d̂ · (∇kxd̂×∇ky d̂) (90)

2see Mathematica file
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and

B−
z =

1

2
d̂ · (∇kxd̂×∇ky d̂) (91)

In a compact form, we have the very useful relation

B±
z = ∓1

2
d̂ · (∇kxd̂×∇ky d̂) (92)

The prefactor ∓ is related to the our definition of the Berry connection as
An(k) = i ⟨ψn(k)|∇k|ψn(k)⟩. In the literature, some authors use the definition
An(k) = −i ⟨ψn(k)|∇k|ψn(k)⟩, resulting in a ± prefactor.

6 Example 2. Rashba 2DEG

Let us now consider an ideal model of a two-dimensional electron gas (2DEG) confined in
a x, y plane with a Rashba coupling

HR(k) =
k2

2m
σ0 − αRσσσ · k× ẑ , (93)

where αR is a coupling constant, ẑ a unit vector in the z direction and σ0 is the identity
matrix. The full hamiltionian is therefore

H =
k2

2m
σ0 + αR(kyσx − kxσy) (94)

Since crystal momentum is a good quantum number we can look for solutions of the kind
|Ψ⟩ = |k⟩|ψ⟩, where ⟨x|k⟩ ∝ eik·x is a plane wave and |ψ⟩ is a spin state. Using explicitly the
Pauli matrices previously defined and expressing the wave-vector as k = k(cosϕ, sinϕ, 0),
we can write down the hamiltonian in the form

H =
ℏ2k2

2m

(
1 iηe−iϕ

−iηeiϕ 1

)
where η = 2mα/(ℏ2k). We can find its eigenvalues by solving the quadratic equation

det
(

1− λ iηe−iϕ

−iηeiϕ 1− λ

)
= (1− λ)2 − η2 = 0

which has the ϕ-independent solutions λ± = 1 ± η. Therefore the energy eigenstates are
given by (see Figure 1)

E± =
ℏ2k2

2m
± αk (95)
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Figure 1: Section of the dispersion relation of a Rashba 2DEG

It is important to note that the energy depends on the spin state (here indicated as + or
−). The normalised spin eigenvectors are

|ψ+⟩ = 1√
2
(ie−iϕ, 1) (96)

|ψ−⟩ = 1√
2
(−ie−iϕ, 1) (97)

One important result is that the spin direction is tied to the electron momentum, since it
depends on the parameter ϕ. We can learn more about the spin direction by applying the
Pauli matrices to these states. This allows us to track the spin direction in momentum
space. By direct computation we find

S⃗+ = (⟨ψ+|σx|ψ+⟩, ⟨ψ+|σy|ψ+⟩, ⟨ψ+|σz|ψ+⟩) = 2√
2
(sinϕ,− cosϕ, 0) (98)

S⃗− = (⟨ψ−|σx|ψ−⟩, ⟨ψ−|σy|ψ−⟩, ⟨ψ−|σz|ψ−⟩) = 2√
2
(− sinϕ, cosϕ, 0) (99)

From these equations we can see that the spin is always perpendicular to the momentum
and its direction is given by

Ŝ± = ±k̂× ẑ (100)
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Figure 2: In the trigonal Rashba 2DEG, each spin band is characterised by a non-trivial
spin texture with an out-of-plane spin components induced by the effect of trigonal warping.

We remark that the spin texture of a Rashba 2DEG lies fully on a two-dimensional
plane. The relationship

B±
z = ∓1

2
d̂ · (∇kxd̂×∇ky d̂) (101)

shows us that the absence of an out-of-plane component of the spin texture ensures a
vanishing Berry curvature. The Berry curvature is not well defined at the origin, where the
bands are degenerate.

7 Example 3. Rashba 2DEG with a trigonal crystal field

We now consider a Rashba 2DEG with a trigonal crystal field. At linear order in the
momentum k, the minimal two-band Hamiltonian for a Kramers’ related pair of bands
reads:

HR(k) =
k2

2m
σ0 − αRσσσ · k× ẑ , (102)

where σσσ is a vector of Pauli matrices, σ0 is the identity matrix, αR is the “Rashba" spin-orbit
coupling strength, while m is the effective electron mass.

The Hamiltonian in Eq. (102) does not take into account crystalline anisotropy effects.
Moreover, as we have demonstrated, the Berry curvature related to this minimal model is
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Figure 3: Exclusion plot of the Berry curvature Bz over the Fermi surfaces of the two
spin sub-bands.

zero, since there is no term proportional to σz. Nevertheless, higher order momentum terms
alter this result.

The first symmetry allowed term accounting for crystalline anisotropy is third order in
momentum and takes the form

Hw(k) =
λ

2
(k3+ + k3−)σz . (103)

where k± = kx± iky. This Hamiltonian is proportional to the Pauli matrix σz, which leads
to an out-of-plane spin texture (see Figure 2) and a non-zero Berry curvature. To show the
presence of a finite Berry curvature induced by warping, we use the relationship

B±
z = ∓1

2
d̂ · (∇kxd̂×∇ky d̂) (104)

For this specific model the vector d has components

d =
{
−ky, kx, λ

(
k3+ + k3−

)
/2
}
. (105)

The d vector is independent of terms ∝ σ0, and thus of the momentum dependent
effective electron mass. For the Berry curvature we find 3

B±
z (k, θ) = ±

2
√
2λα2

Rk
3 cos(3θ)[

2α2
Rk

2 + λ2k6 cos(6θ) + λ2k6
]3/2 , (106)

3See Mathematica file
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where θ is the polar angle in momentum space.
The Berry curvature is well defined in each point except the origin where the bands are

degenerate.
The local BC of the spin-split bands of each Kramers pair cancel each other at the

same crystal momentum. However, there is a region of crystal momenta populated by a
single spin band. In this region – the annulus between the two Fermi lines of the system –
alternating positive and negative regions of non-vanishing BC are present (see Fig. 3).
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