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1 Classical Drude-Sommerfeld transport

In the most basic formulation of the Drude-Sommerfeld model, we consider the dynamics
of single-particles in metals exposed to a static, homogeneous electric field. We represent
the scattering from impurities in the crystalline lattice as a single phenomenological (i.e.
not derived from a microscopic theory) parameter, the momentum relaxation time τ . This
parameter represents the average time between scattering events. After each scattering
event, we assume the momentum to be completely randomized, with a zero average. This
is an approximate classical modeling of disorder that leaves much to be desired. However,
it has the merit to lead to a correct identification of the particles mobility and conductivity.
Furthermore, it will serve as a classical, intuitive backdrop as we make our way forward
towards a more accurate quantum description.

If we assume the average time between scattering events to be τ , we infer the following
relations:

probability of scattering in a time interval dt =
dt

τ
(1)

probability of not scattering in a time interval dt = 1− dt

τ
(2)

These allow us to write an equation of motion for the momentum p

p(t+ dt) =

(
1− dt

τ

)
︸ ︷︷ ︸

prob not scattering x

×
(
p(t)− eE(t)dt

)
︸ ︷︷ ︸
newtonian dynamics

+

(
dt

τ

)
︸ ︷︷ ︸

prob scattering x

×
(
0

)
︸︷︷︸

average p after scattering

(3)
which leads, up to linear order, to the following differential equation

p(t+ dt)− p(t) = −eE(t)dt− p(t)
dt

τ
(4)

dp

dt
= −eE(t)− p

τ
(5)

For a time-independent homogeneous electric field E(t) = E, we find the following steady-
state (dp/dt = 0) solution:

p = −eτE (6)

This steady-state corresponds to a drift of diffusing particles under a constant field (see
figure).
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These dynamics are characterised by a drift velocity

v =
p

m
= −eτ

m
E = −µE (7)

The parameter µ is called the electron mobility. The drift velocity allows us to compute
the current density

j = −nev = neµE = σE (8)

which leads us to identify the dc Drude-Sommerfeld conductivity

σdc = neµ =
ne2τ

m
(9)

Despite the classical nature of this derivation, the relation we obtained for the conductivity
holds up to more accurate scrutiny. We will develop two more advanced descriptions of the
conductivity, the first based on a semiclassical model, the second fully quantum mechanical
(during the lecture on correlation functions), and both approaches will lead to this result.
The main intellectual gain from this extra effort will be a microscopic description of the
momentum relaxation time τ . These more accurate models will also properly account
for the presence of a crystal lattice (Bloch electrons dispersion) and can be extended to
consider other sources of scattering in addition to impurities.

2 Semiclassical Boltzmann transport

2.1 Boltzmann equation

The Boltzmann semiclassical theory of transport is based on finding a distribution func-
tion that describes the electron system under some non-equilibrium conditions created by
stimulating the solid with electromagnetic fields or thermal loads. We find an out of equi-
librium distribution function by solving an equation generalised from the kinetic theory of
diluted gases, the Boltzmann equation.
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In the context of a transport theory of metals, the Boltzmann equation captures some
elements of the quantum dynamics of electrons by describing them as wavepackets with a
Fourier spectrum. However, we should be aware that this approach will not account for all
quantum mechanical effects. As we will see, a notable limitation is that multiple scattering
paths will be simply added up. Consequently, the description of quantum interference
between different paths leading to the same final state will require a different formalism,
summarised later in the course.

A (semiclassical) distribution function f describes the probability of a (quantum) par-
ticle to be in a position r, with momentum p, at time t, (within the constraints of the
Heisenberg inequality).

Number of electrons in an element of phase space =

(
f(r,p, t)

)
︸ ︷︷ ︸
distribution

(
2
d3rd3p

(2πℏ)3︸ ︷︷ ︸
density

)
(10)

In thermodynamic equilibrium, the distribution function is given by the Fermi-Dirac dis-
tribution fFD

f(r,p, t) = fFD(p) =
1

e(ϵ(p)−µ)/kBT + 1
(11)

The function ϵ(p) represents the electron dispersion.
The presence of external fields will introduce variations in the space, momentum and

time dependence of the distribution function, creating some non-equilibrium conditions.
The response of the system, by means of a redistribution of electrons in state i = (r,p), is
described by the Boltzmann equation for fi,

d

dt
fi = I[fi] (12)

d

dt
f(r,p, t) =

∂f

∂t
+

(
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
+
∂f

∂z

dz

dt

)
+

(
∂f

∂px

dpx
dt

+
∂f

∂py

dpy
dt

+
∂f

∂pz

dpz
dt

)
(13)

=

(
∂f

∂t

)
︸ ︷︷ ︸

time-dependent fields

+

(
∇f · ṙ

)
︸ ︷︷ ︸

inhomogeneous fields

+

(
∂f

∂p
· ṗ

)
︸ ︷︷ ︸
external forces

= I[f(r,p, t)] (14)

The action of external fields is described on the left hand side of the equation, where
time-dependent, inhomogeneous fields and external forces modify the space, momentum
and time dependence of the distribution function. The redistribution of electrons in state
i, caused by scattering processes, (the probability of changing the occupation of state
i through scattering) are described by a functional of the distribution I[fi], called the
collision integral, on the right hand side of the equation.
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The Boltzmann equation describes a transfer of electrons from state i to the others
and vice-versa, governed by the collision integral. The collision integral accounts for the
probability of loss (increase) of particles from (into) state i associated with the scattering
mechanisms that we consider. We will assume the limit of weak deviations from equilib-
rium, in which the collision integral is a linear functional. A typical form for calculating
this functional from the probability per unit of time of having a transition from state p to
state p′ (encoded by the scattering rate up′p) is:

I[fi] = Probability of changing the occupation of state p = (15)

=

∫
2s

d3rd3p

(2πℏ)3︸ ︷︷ ︸
sum over all possible states

[ (
− up′pfp(1− fp′)

)
︸ ︷︷ ︸
loss of particles from p to p’

+

(
upp′fp′(1− fp)

)
︸ ︷︷ ︸

gain of particles from p’ to p

]
(16)

In a Boltzmann transport calculation we: 1) identify the relevant scattering processes,
2) write the associated collision integral, a functional of the distribution function 3) solve
the Boltzmann equation for the distribution function f and 4) using the solution f , calculate
the electrical conductivity or other transport quantities of interest (e.g. thermal transport).

2.2 Collision integral. Scattering from impurities.

The next step is to describe the collision integral (probability of loss (increase) of particles
from (into) state i) associated with scattering from impurities using Fermi’s golden rule,
a basic formulation of perturbation theory (a perturbative analysis of impurity scattering
is also known as the Born approximation). In this description, the probability per unit of
time (scattering rate) to have a transition from state p to state p′ is

wp′p =
2π

ℏ
|Vp′p|2δ[ϵ(p)− ϵ(p′)] (17)

where Vpp′ is the matrix element of the total impurity potential V (r). This potential is
the sum of all the potentials associated with the individual impurities v(r − rn) (indexed
by their positions rn on the lattice sites):

V (r) =
∑
n

v(r − rn) (18)

We compute the matrix elements using the Bloch’s states

ψp(r) =
1√
V
up(r)e

ip·r/ℏ (19)

remembering that up(r) = up(r + rn). We define the matrix elements of the individual
impurity potential as

vp′p =

∫
ei(p−p′)·r/ℏu∗p′(r)v(r)up(r)d

3r (20)
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Therefore we find for the matrix elements of the whole impurity potential

Vp′p =

∫
ψ∗
p′(r)V (r)ψp(r)d

3r = (21)

=
1

V

∑
n

∫
ei(p−p′)·r/ℏu∗p′(r)v(r − rn)up(r)d

3r = (22)

=
1

V

∑
n

∫
ei(p−p′)·(r+rn)/ℏu∗p′(r + rn)v(r)up(r + rn)d

3r = (23)

=
1

V

∑
n

ei(p−p′)·rn/ℏ
∫
ei(p−p′)·r/ℏu∗p′(r)v(r)up(r)d

3r = (24)

Vp′p =
1

V

∑
n

ei(p−p′)·rn/ℏvp′p (25)

This quantity depends explicitly on the position of each individual impurity, which renders
its calculation impossible in any realistic scenario. In order to continue, we need to perform
an operation called impurity averaging, which consists in averaging the calculation of the
matrix element over all possible realisations of disorder. This is possible whenever the mean
root square deviations of a quantity are much smaller than its average, which is the case for
macroscopic solids. In this case disorder is said to be self-averaging. For mesoscopic solids
this condition is not satisfied. Impurity averaging consists in summing over all possible
impurity positions in the following way:〈

|Vp′p|2
〉
=

1

V 2

〈∑
n,k

ei(p−p′)·(rn−rk)/ℏ
〉
|vp′p|2 (26)

The terms n ̸= k will return a collection of randomly and evenly distributed phases. They
will average out to zero. The terms n = k will instead sum up to the number of impurities
Ni. Therefore we obtain 〈

|Vp′p|2
〉
=
ni
V

|vp′p|2 (27)

where ni = Ni/V denotes the density of impurities. Under this assumption, Fermi’s
golden rule returns the following approximation for the scattering rate (probability per
unit of time)

wp′p =
2πni
ℏV

|vp′p|2δ[ϵ(p)− ϵ(p′)] (28)

We are now in a position to write an expression for the collision integral (probability of
loss (increase) of particles from (into) state i) associated with scattering from impurities:

I[fi] =

∫
2s

d3rd3p

(2πℏ)3
[(

− wp′pfp(1− fp′)
)
+
(
wpp′fp′(1− fp)

)]
(29)
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2.3 Relaxation time approximation

We now make some further simplifying assumptions on the nature of scattering from im-
purities. We will assume an isotropic electron dispersion and isotropic scattering described
by a matrix element w0. In this case the scattering rate is

wp′p = wpp′ = w0δ[ϵ(p)− ϵ(p′)] (30)

and the collision integral becomes

I[fp] = −w0V

∫
2s

d3p

(2πℏ)3
δ[ϵ(p)− ϵ(p′)](fp − fp′) = (31)

= −w0V g[ϵ(p)]

∫
dΩ′

4π
(fp − fp′) (32)

The integral over the solid angle Ω′ is performed over the orientations of the states p′ having
the same norm as state p (isotropic elastic scattering). The scattering rate is defined as
1/τ = w0V g[ϵ(p)], where g[ϵ(p)] is the density of states at energy ϵ(p):

I[fp] = −1

τ
fp +

1

τ

∫
dΩ′

4π
fp′ (33)

Finally, if we assume that the distribution of states p′, averaged over all possible directions
of this vector, is the same as the equilibrium distribution, that is∫

dΩ′

4π
fp′ = fFDp (34)

we find

I[fp] = −1

τ
(fp − fFDp ) (35)

We have reduced the collision integral into a form known as the relaxation time approxima-
tion. If the set of idealised conditions outlined here are realised, this form of the collision
integral is exact. However, it is often used in many practical calculations even if these
ideal conditions are not present. The relaxation-time approximation is often the first ap-
proach used to describe transport, disregarding the complexities introduced by anisotropic
electronic structures, scattering centres with asymmetric cross section, etc.

2.4 Electrical conductivity

For a time-independent, homogeneous electric field E, the Boltzmann equation reduces to

∂f

∂p
· ṗ = I[fp] (36)
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−∂f
∂p

· eE = I[fp] (37)

In the relaxation-time approximation

−∂f
∂p

· eE = −1

τ
(fp − fFDp ) (38)

we need to solve this equation for fp. Our strategy will focus on expanding the solution
fp in powers of the electric field E:

fp = fFDp + f1p + higher order terms in E (39)

with f1p ∝ E and the zero-order term is identified as the Fermi-Dirac distribution. In the
linear response regime, we retain only the linear terms in the electric field:

eE · ∂
∂p

[fFDp + f1p] =
1

τ
(fFDp + f1p − fFDp ) (40)

Since f1p ∝ E we can solve this expression in the linear response regime:

f1p = eτE · ∂
∂p
fFDp = (41)

= eτE · d

dϵ
fFD

∂ϵ

∂p
= (42)

=

(
d

dϵ
fFD

)
eτE · v = (43)

where v = ∂ϵ
∂p is the group velocity of the wavepacket.

We have now solved the Boltzmann equation in the relaxation time approximation and
we are equipped with an out of equilibrium distribution function induced by a weak electric
field (see figure):

f linear response
p = fFD +

(
d

dϵ
fFD

)
eτE · v (44)

We can use this knowledge to calculate the current induced by an external electric field
and therefore infer the conductivity. The current density is given by the product of the
charge −e, the group velocity v associated with the state at p, the density of states per unit
volume Dp = 2/(2πℏ)3 and the probability density function fp summed over all states.

j = −nev = −e
∫

vDpfpd
3p = −2e

∫
vfp

d3p

(2πℏ)3
(45)
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Since there is no current at equilibrium, for an isotropic medium we find

j = −2e2
∫ (

d

dϵ
fFD

)
τv(E · v) d3p

(2πℏ)3
(46)

For kBT ≪ ϵF, we have
d
dϵf

FD = −δ(ϵ−µ). In other words, the conductivity is determined
by electronic states sharply located at the Fermi surface.

We can then change the integration over all momenta, to an integration over just the
Fermi surface. For an isotropic Fermi Surface

2

∫ (
− d

dϵ
fFD

)
d3p

(2πℏ)3
= g(µ)

∫
FS

dS (47)

where the surface integral is normalised
∫
FS dS = 1 and the density of states g(µ) has

absorbed the factor 2 for spin degeneracy. For a spherical Fermi surface, the current can
be written

j = e2
∫

sin θdθdϕ

4π
g(µ)τv(E · v) ≃ 1

3
e2
(
gv2τ

)
ϵ=µ

E (48)

where the factor of 1/3 appears from the integration over the sphere of v(E · v), remem-
bering that in this case v is always normal to the surface.

Remembering that
j = −nev = neµE = σE (49)
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we identify the conductivity

σ =
1

3
e2
(
gv2τ

)
ϵ=µ

(50)

This relation can be used to calculate the conductivity within the relaxation-time approx-
imation of isotropic solids with a known dispersion relation. Using a parabolic dispersion
with effective mass m∗, we find

σdc =
ne2τ

m∗ (51)

which coincides with the Drude-Sommerfeld result for m∗ = m.
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