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1 Introduction and experimental observations

The specific heat is a measurable quantity that relates the heat (energy) added to a physical
system to a change in its temperature. For a Fermi gas this is entirely determined by the
thermal excitation of free electrons above the Fermi energy in an energy window of the
order kBT

C =
1

V

(
∂E

∂T

)
V

=
π2

3
kBTg(ϵF ) (1)

This fact is a consequence of the Fermi statistics and of the Pauli principle for fermions.
It is important to note that the specific heat of a non-interacting Fermi gas has a linear
temperature dependence

C = γT (2)

The linear slope is a measure of the density of states at the Fermi energy g(ϵF ), that is
related to the effective mass of the electrons.

1.1 3He

3He is characterized by a spin quantum number 1/2, unlike the more common isotope 4He
(s = 0). Therefore, by virtue of the spin-statistics theorem, it obeys the Fermi statistics.
The low-temperature liquid state of 3He has been studied for many years as a prototype
of a fluid of interacting fermions in the absence of complications introduced by the crys-
talline environment of solids. In particular, in 3He we find full translational and rotational
symmetries which greatly simplify its analysis. Moreover, since 3He is charge neutral, the
interaction between atoms can be described as short range, avoiding all the complications
introduced by the screening of the long-range Coulomb interaction in metals.

The temperature-pressure phase diagram of 3He is shown in Figure 1. From this di-
agram we take home that 1) 3He remains a normal liquid (non superfluid) down to the
mK range and 2) 3He can be turned into a solid applying a pressure of about 30 bar.
This transition towards a solid state offers the opportunity to enhance the strength of the
interaction between fermions by applying pressure.

Figure 2 shows the specific heat of 3He as a function of temperature measured at two
different pressures (Greywall et al. Phys. Rev. B 27, 2747 (1983)). The low-temperature
linear dependence of this quantity (highlighted by the dashed lines) indicates something
very important: in this regime 3He exhibits the same qualitative behaviour of a free electron
gas (see equation 1). On the other hand, the slope of the linear approximation reveal a
higher effective mass than the bare mass of 3He, being on the order of 5mHe3. This fact
does not find an explanation within a free Fermi gas approximation. Please note that we
have realised that interactions with the crystalline lattice in a quasi-realistic band picture
(for example our tight-binding toy model of lecture 1) lead to variations of the group
velocity of electronic waves and therefore a renormalisation of density of states and effective
masses. Here we are experimentally confronted with something different, a much stranger
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Figure 1: Temperature-pressure phase diagram of 3He. From ltl.tkk.fi

beast. In a translationally invariant environment with tunable interactions we observe the
persistence of a single-particle-like thermal response with a renormalised density of states
(effective mass). Understanding the qualitative similarities but quantitative differences
with a non-interacting picture is one of the main goals of our discussion.

1.2 Heavy fermions in CeAl3

Figure 3 shows the specific heat of an intermetallic compound, CeAl3 (Phys. Rev. Lett.
35, 1779 (1975)). As discussed previously in the case of 3He, this material exhibits also
a linear temperature dependence of the specific heat. The slope of the linear regression
though, points to an effective mass that is about 1000 times larger than the mass of
free electrons! For this reason, this material and related compounds are known as heavy
fermions. Although the electron mass undergoes such a large renormalization, the material
still behaves qualitatively as a free electron gas. By comparing the previous case of 3He
with CeAl3 we are persuaded that the same phenomenology holds in very different physical
realizations of interacting systems of fermions with a large tolerance to the renormalization
of the effective masses. Therefore there must be a very profound and robust mechanism
at work. We will see that this is indeed the case and this mechanism is known as the
formation of Landau quasiparticles.
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c, ~,„=g a;T', ai ——223.807,

a2 ———2719.01, a 3——16262.2,
a4 ———60058.9, a5 ——146901.0,
a6———236211.0, a7——230955.0,
a8———104264.0 .

The rms deviation is -2%. Since the heat capacity
of the thermometer is dominated by the liquid He
contribution, the results tend toward a linear tem-
perature dependence at low temperature. The
minimum near 0.3 K corresponds to the region in
which the largest fraction of He has been converted
to solid.
The ratio of the addendum heat capacity to the

sample heat capacity is shown in Fig. 5(b). The two
molar volumes correspond to nominal sample pres-
sures of 0 and 29 bar. It is seen then that in the
worst case this ratio is 3%. Consequently, the 2%
uncertainty in the addendum has only a negligible
effect on the final results.

III. RESULTS AND DISCUSSION

TABLE III. Molar volumes of the He samples.

Sample

Nominal
pressure
(bar)

0
5
11
17
22
29
32

Molar
volume
(cm )

36.743
32.566
30.054
28.373
27.270
26.270
25.672

Temperature
range
(K.)

0.007—0.5
0.007—0.5
0.007—0.5
0.007—0.5
0.007—0.5
0.007—0.5
0.007—0.5

8
9
10
11
12
13

0
5
11
17
22
29

36.260
32.512
30.014
28,304
27.222
26.200

0.4—2.5
0.4—2.5
0.4—2.5
0.4—2.5
0.4—2.5
0.4—2.5

The lack. of even qualitative agreement between
these two sets of curves is a clear demonstration that
liquid He must be treated as a strongly interacting
system.
According to the Landau theory, which applies at

very low temperatures, the He- He interactions

A. General results

With

Cv m' r
R 2 Tp'

2/3
fi 3~ E 54 91+ 2/3

2m 3k' V

(5)

(6)

The specific heat of normal liquid He was mea-
sured with high precision along several isochores
corresponding to sample pressures between 0 and
32.5 bar and over the temperature range 7 mK to 2.5
K. These data were obtained in two sets: First,
measurements were made in the temperature range 7
to 500 mK, and then after minor modification of
the apparatus, in the range 0.4 to 2.5 K. The molar
volumes of the samples are listed in Table III.
The qualitative features of the results over the

whole temperature range are shown in Fig. 6 where
smoothed curves for the molar specific heat Cz di-
vided by the gas constant R are plotted at two molar
volumes corresponding to I' =0 (36.8 cm /mole) and
to P=29 bar (26.2 cm /mole). For comparison the
long-dashed curves are the ideal Fermi-gas specific
heat at the same two densities. In the degeneracy re-
gion at very low temperatures (T&&TF) the ideal
gas specific heat is linear in T and is given by

1.5 I

V„= 26.2—5.4 ~ t-
TF =l.2K, /

1 I
I
I

~re
~e+

V= 36.8
fYlp = fTlg

TF = 5.0K
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0
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l
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FIG. 6. Smoothed results for the He specific heat (in
units of the gas constant R) measured at molar volumes
corresponding to nominal sample pressures of 0 and 29
bar. For comparison, long-dashed curves show the ideal-
Fermi-gas specific heat at the same two densities. Short-
dashed curves were also computed using the ideal-gas re-
lations but with the particle mass adjusted to give the
correct limiting slopes at T=0.

m* = mHe3

m* = 5mHe3

Figure 2: Solid lines: specific heat of 3He as a function of temperature measured at two
different pressures. Dashed lines: linear dependence expected for a given effective mass.
From Greywall et al. Phys. Rev. B 27, 2747 (1983)
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4f-Virtual-Bound-State Formation in CeA13 at Low Temperatures

K. Andres and J. E. Graebner
BeEE Laboratories, Murray HiEE, Neu Jersey 07974

and

H. R. Ott
Laboratorium fur FesthorPerphysih, Eidgeno ssis'che Technische Hochschule,
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Specific-heat and electrical-resistivity measurements in CeA13 below 0.2 K reveal enor. —
mous magnitudes of the linear specific-heat term C = 1'T (1'=1620 mJ mole/K ) and the T
term in p=AT (@=35pu cm/K). We conclude that the 4f electrons obey Fermi statis-
tics at low temperatures because of the formation of virtual bound 4f states.

In the intermetallic compound CeA1, both the
lattice parameters and the susceptibility at high
temperatures suggest that the Ce ion is in a 3+
state. The lack of magnetic order at low tem-
peratures is interpreted as being caused by a
partial admixture of the nonmagnetic 4+ state.
Such behavior has been explained in different
ways in the past. A model distinguishing be-
tween "atomic" and "bandlike" 4f electrons has
been suggested by Gschneidner. ' More recently,
CeAl, has often been cited as an example of a
mixed valence- -or interconfigurational fluctua-
tion (ICF)—compound'; and in another approach,
Mott' has explained the peculiar properties of
CeAl, based on a Kondo-type theory. The pur-
pose of this note is to present new data on the
very-low-temperature properties of CeAl, and
to show that they can be understood using Frie-
del's' classic theory of virutal bound states.
All measurements were performed in dilution

refrigerator s except the thermal-expansion mea-
surement, which was done in a 'He cryostat.
The data were taken by standard techniques us-
ing a cerium-magnesium-nitrate magnetic-sus-
ceptibility ther mometer. Only polycrystalline
samples were investigated; they were cut from
a 20-g button-that was are melted in argon and
annealed at 900 C for 3 weeks. X-ray analysis
showed the proper structure (hexagonal, Ni, Sn-
type). The specific-heat results are shown in
Fig. 1. Below 150 mK, the specific heat varies

0.10

K+

0.01

100 200
T (mK)

500

FIG. 1. Specific heat of CeA13 at very low tempera-
tures in zero field (o, b,) and in 10 kOe (Q).

linearly with temperature and yields an extreme-
ly large y value of 1620 mJ/mole K'. It remains
practically unchanged in a field of 10 koe except
at the lowest temperatures where the nuclear
Zeeman specific heat of the Al nuclei is seen
(the Ce"' and Ce"' isotopes have no nuclear
spin). This behavior is to be contrasted with
what one would have expected from the lowest-
].ying Ce" Kramers doublet state, namely a
strong field-dependent magnetic specific heat
with entropy R ln2/mole. Interpolating our data
with previous specific-heat measurements down

1779

Figure 3: . Specific heat as a function of temperature of CeAl3. From Phys. Rev. Lett.
35, 1779 (1975)

2 Landau quasiparticles

We begin by outlining the basic assumptions of the Landau theory of Fermi liquids. As we
have seen in our first lecture, the elementary excitations of the Fermi gas are: 1) single-
electron excitations outside the Fermi surface (k > kF ) or single-hole excitations inside the
Fermi surface (k < kF ). We can describe both these elementary excitations of the Fermi
gas as a single, energy-momentum (dispersion) relation:

|ϵ(k)| = ℏ2|k2 − k2F |
2m

≃ ℏvF |k − kF | (3)

These excitations are probed in a variety of experiments based on the addition or removal of
single-particles from many-body systems such as photoemission spectroscopy and scanning
tunnelling spectroscopy.

Now we turn on electron-electron interactions and we represent this process as an
adiabatic increase of a potential energy λV by means of a slow increase of the parameter
λ ∈ [0, 1]. We assume that the spectrum of eigenstates of the interacting hamiltonian
is adiabatically connected to the non-interacting Fermi gas, i.e. to each ground state
wavefunction we can assign a corresponding interacting quantum state labeled by the same
set of quantum numbers. This condition is not verified whenever we have a transition to
a different state of matter driven by interactions (e.g. superconductivity and other Fermi
liquid instabilities introduced in the previous lecture, often characterised by an absence
of single-particle density of states at the Fermi surface, within an energy range called the
energy gap). However, it is a good approximation for a vast number of many-body systems.
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Provided that the adiabatic condition holds, we can restate the fundamental relation-
ship between the electron density and the k-space volume occupied by a system of fermions.
Following our definition of Green’s function, the particle density n is in relation with the
volume in k-space inside of which G(ω = 0, k) > 0 (D is the dimensionality of the system)

n = 2

∫
G(ω=0,k)>0

dDk

(2π)D
(4)

In a system with a well-defined Fermi surface, the Green’s function diverges at its edge.
Within the Fermi surface, we find a k-space volume where the Green’s function is positive.
After diverging at the edge of this volume, the Green’s function becomes negative outside.
In this condition we may formulate the statement “the density of particles is proportional
to the volume inside the Fermi surface” or

n =
k3F
3π2

(5)

In the presence of interactions that can be described by perturbation theory (do not lead
to a phase transition or the insurgence of a gap at the Fermi surface), the Luttinger’s
theorem states that this relationship continues to be valid at any order of the perturbative
expansion.

We are interested in describing finite temperature properties of interacting systems of
fermions, therefore we necessarily need to address the possibility of an adiabatic connection
between excited states of the Fermi gas and excited states of an interacting electron system.

If the many-body system has a well-defined Fermi surface, then we can make the follow-
ing considerations on the nature of the excited states in the adiabatic approximation. We
will make an intuitive (phase space) argument due to Landau, that allows us to understand
the nature of the scattering processes without resorting to complex calculations.

Let’s consider a filled Fermi sphere and an extra electron added to the system with
momentum k and energy ϵ(k) = ϵ1 > ϵF . This electron interacts with the Fermi sea,
resulting in the creation of a particle-hole excitation. As the additional electron changes
its momentum to k − q, a hole appears in k′ and an electron with momentum k′ + q
is promoted outside the Fermi surface. Conservation of energy and momentum apply,
resulting in

k = k − q − k′ + k′ + q (6)

and
ϵ(k) = ϵ(k − q)− ϵ(k′) + ϵ(k′ + q) (7)

Please note that in principle a large number of such scattering channels are possible and it
looks like the excitation should readily decompose into a broad spectrum of excited states,
losing its identity as a single-particle excitation. However, the limited phase space available
plays an important role that we will now outline.
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The scattering rate of these processes is proportional to the matrix elements of the
interaction |V (q)|2, the number of available states, bounded by conservation of momentum
and energy (Fermi golden rule), summing over all possible configurations for k′ (hole states)
and q (exchanged momentum):

Γ(k) =
2π

ℏ
1

V 2

∑
k′q

|V (q)|2f(ϵk′)[1−f(ϵk−q)][1−f(ϵk′+q)]δ(ϵ(k−q)− ϵ(k′)+ ϵ(k′+q)− ϵ(k))

(8)
where we have indicated with the usual notation f the distribution function (see notes to
lecture 1). The factor f(ϵk′) ensures the availability of a hole state with momentum −k′,
while [1−f(ϵk−q)][1−f(ϵk′+q)] ensures the availability of an electronic state to scatter into
by exchanging momentum q.

We will not perform this integration formally but we can intuitively see that the Pauli
principle (no double occupation of states) and the sharp decrease of the Fermi distribution
at ϵF constrains the available states for scattering in two factors:

1) Phase space integrated by k′: the shell of electrons within the Fermi sea available for
interactions within the constraints of energy conservation and Pauli principle are limited
to a top layer of the Fermi surface with energy range (ϵ1− ϵF ) (k

′ needs to be close enough
to the Fermi surface in order to promote an extra electron outside the Fermi sea).

2) Phase space integrated by q: the shell of final states available for occupation is also
limited to an energy range (ϵ1 − ϵF ) (k′ + q needs to be outside of the Fermi surface in
order to contribute to scattering).

Therefore the scattering rate is expected to show an energy dependence

Γ ∝ (ϵ1 − ϵF )
2 ∝ ω2 (9)

Formal calculations confirm indeed this intuitive result. Please reflect on its meaning:
as we consider interacting electrons closer and closer to the Fermi surface (ω → 0), we
expect to see an increased lifetime in the presence of electron-electron scattering. The
farther we move away from the Fermi surface the faster scattering processes will manifest.

We are getting close to the solution of our outstanding problem. We want to establish
whether or not it is possible to describe the excitations of an interacting Fermi system as
quasi-adiabatically connected with the spectrum of excited states of the non-interacting
Fermi gas. In order to identify these as legitimate particles with a quasi-adiabatic connec-
tion with the non-interacting Fermi gas, we still need to tackle one pressing issue. Since
our excitations are characterized by a finite lifetime, in order to identify them as particles
with a well-defined energy, we need to make sure that their wavefunction exhibit several
oscillations before damping. If the damping produced by the finite lifetime is fast compared
to the oscillations period, the excitation does not have a well-defined energy. In formula

ϵ(k)−1 ≫ τ (10)

7
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At first sight this requirement seems very hard to meet. Using the Landau phase space
argument outlined in the previous section, we realize that the scattering rate grows quadrat-
ically in energy as a consequence of the discontinuity of the Fermi statistics and the Pauli
principle.

τ−1(ω) ∝ ω2 (11)

Since the period T of the oscillation of the wavefunction grows as

T−1 ∝ ω (12)

we can observe that
τ

T
∝ ω−1 → ∞, ω → 0 (13)

As we approach the Fermi energy, the single particle excitations acquire a well-defined en-
ergy as the increase of their lifetime is more rapid than the decrease in oscillation frequency.
The phase space available for scattering processes is reduced very rapidly as we approach
the Fermi energy, making these excitations long-lived particles.

This important observation consolidates our interpretation of the single-particle excita-
tions of quantum liquids as legitimate particles. These particle-like excitations are known
as quasiparticles. Systems of interacting fermions that display such properties are known
as Fermi Liquids.

3 Signatures of a Fermi liquid and Landau parameters

A hallmark of electron-electron interactions described by a Fermi liquid state is a depletion
of the states below the Fermi energy (through electron-hole excitations) and a population
of states above the Fermi energy. The electron distribution is therefore modified from a
step function to a function that is still discontinuous at the Fermi energy but decreases
smoothly on both sides of the discontinuity. The size of the discontinuity is not 1, as in
the case of the free Fermi gas but it is identified as a quantity, known as the quasiparticle
residue Zk < 1, defined below. Another important signature of a Fermi liquid state is the
nature of the temperature dependence of the resistivity, a T 2 law, discussed in the following
lecture.

The Landau theory goes on to develop the specific heat, effective mass, compressibility,
spin susceptibility (Landau parameters) of interacting electrons. Collective phenomena
through quasiparticles interactions can even be described and these will be addressed in
lecture 9.

Based on our definition of quasiparticles outlined above, we are in a position to write
an expression for the free energy F , as a functional of the quasiparticle distribution δnk,σ.
From the free energy we will be able to compute the thermodynamics responses of interest
for a Fermi liquid, such as specific heat and spin susceptibility.

8
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F [δnk,σ] = EGS︸︷︷︸
ground state energy

+
∑
k,σ

ϵ(k)δnk,σ︸ ︷︷ ︸
renormalized kinetic energy

+
1

2

∑
k,σ,k′,σ′

fk,σ,k′,σ′δnk,σδnk′,σ′

︸ ︷︷ ︸
quasiparticle-quasiparticle interactions

−TS

(14)
In the kinetic energy term we find a renormalised dispersion

ϵ(k) ≃ kF
m∗ (k − kF )− µ (15)

parameterised with an effective mass m∗. This reflects the dressing of the quasiparticles
by interactions. The quasiparticle-quasiparticle interactions are described by the interac-
tion term fk,σ,k′,σ′ that can be decomposed in a spin symmetric and a spin antisymmetric
component fs,a

f s,a = (f↑↑ ± f↑↓) /2 (16)

Because of rotational invariance, fs,a only depends on the angle θ between k and k′,
i.e. fs,a(cos θ). These functions can be expressed as an expansion in Legendre polynomials
Pl(cos θ).

fs,a =
1

2g∗(ϵF )

∞∑
l=0

(2l + 1)F s,a
l Pl(cos θ) (17)

The coefficients of this expansion F s,a
l are called the Landau parameters and they are

defined below:

F s,a
l = 2g∗(ϵF )

∫
2π sin θdθ

4π
fs,aPl(cos θ) (18)

Using the definitions proposed here, the Landau coefficients are adimensional, providing
a useful characterisation of the strength of the renormalisation of the thermodynamic
properties engendered by interactions. In practice the expansion is limited to the first few
terms. Below we summarise the results of the effects on the renormalisation of the specific
heat and spin susceptibility.

3.1 Specific heat

The Landau coefficient F s
1 defines the renormalisation of the quasiparticle mass, influencing

various thermodynamic probes sensitive to the density of states, such as the specific heat.

m∗ = m(1 + F s
1 ) (19)

The Free energy of a Fermi liquid outlined above leads to a specific heat of the form:

C =
π2

3
kBTg

∗(ϵF ) =
m∗kF
3ℏ2

kBT =
m(1 + F s

1 )kF
3ℏ2

kBT (20)
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3.2 Spin susceptibility

An external magnetic field will split the Fermi surface of a Fermi gas in spin up and spin
down electrons, by means of the Zeeman interaction. Similarly, in a Fermi liquid the total
volume of the Fermi surface is conserved and the densities of quasiparticles are split in
a up and down spin component according to the susceptibility as defined by the Landau
parameter F a

0 :

χS = χ0
S

1 + F s
1

1 + F a
0

(21)

In this expression χ0
S is the Pauli paramagnetic susceptibility of the Fermi gas.

4 Microscopic basis for the Fermi Liquid theory

We will now review the quantities that are commonly calculated to describe many-body
effects in solids, in order to highlight the microscopic foundations of the Fermi Liquid
theory. As we have seen from a phenomenological perspective, a wide array of interacting
solids exhibit excitations that resemble independent particles. Therefore, our first order of
business is to define a physical quantity, called the Green’s function, that fully characterizes
the one-particle elementary excitations of a solid and that helps us discern if these resemble
independent particle.

In order to do so, we consider a system of N electrons in its ground state |Ψ0⟩. At
time t = 0 we inject a (N + 1) electron with momentum k (one-particle excitation). The
wavefunction that describes the system at time t = 0+ is (in the occupation number
representation, also known as second quantization)

|Ψ(t = 0)⟩ = a†k|Ψ0⟩ (22)

Here a†k (ak) is the creation (annihilation) operator.
At time t the wavefunction will evolve through the action of the operator e−iHt

|Ψ1(t)⟩ = e−iHta†k|Ψ0⟩ (23)

Now, let us consider a wavefunction at time t that describes the system of N particles and
one additional electron that has just been injected. This wavefunction is

|Ψ2(t)⟩ = a†ke
−iHt|Ψ0⟩ (24)

We would like now to compare these two quantum states. Our aim is to assess if the
system with N +1 particles that has had a time t to interact, still resembles a system with
N + 1 particles with the additional particle that has just been injected. A natural way to
do this is to take the scalar product of the two wavefunctions we just considered

⟨Ψ2(t)|Ψ1(t)⟩ = ⟨Ψ0|eiHtake
−iHta†k|Ψ0⟩ = ⟨Ψ0|ak(t)a†k(0)|Ψ0⟩ (25)

10
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We take this as a definition for the single-particle correlation function G(k, t) (or Green’s
function, valid only for t > 0)

iG(k, t) = ⟨Ψ0|ak(t)a†k(0)|Ψ0⟩ t > 0 (26)

4.1 Non-interacting Green’s function and spectral function

Let us assume that the electron that we have added is stable. It is an eigenstate of the
non-interacting Hamiltonian

H =
∑
k

ξ(k)a†kak (27)

(here ξ(k) is the electron dispersion, or band structure, after subtraction of the chemical
potential) and it does not interact with other degrees of freedom in the solid. In this case,
the scalar product will be a simple phase factor with unit amplitude. The acquired phase
is a function of the energy of this eigenstate. This is a description of the coherent evolution
of the wavefunction that has not mixed with other excited states of the many-body system.
Consequently, the Green’s function will take the non-interacting form G0(k, t)

G0(k, t) = −iθ(t)e−iξ(k)t (28)

θ(t) is the Heaviside function defined as

θ(t) = 0 t < 0 (29)

θ(t) = 1 t ≥ 0 (30)

In the frequency (energy) domain G0(k, ω) takes the form

G0(k, ω) =

∫
dteiωtG0(k, t) (31)

G0(k, ω) =
1

ω − ξ(k) + i0+
(32)

This result stems from the Fourier transform of the Heaviside function∫
dteiωtθ(±t) =

±i

ω ± i0+
(33)

By inspecting equation 32, we realize that the Green’s function exhibits poles at energies
corresponding to one-particle excitations matching the dispersion relation.

At this point it is useful to define the spectral function

A(k, ω) = − 1

π
ImG(k, ω) (34)

11
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Remembering the Cauchy relation

1

x± i0+
= pv

1

x
∓ iπδ(x) (35)

we see that, for non-interacting electrons, the spectral function takes the form

A0(k, ω) = − 1

π
ImG0(k, ω) = δ(ω − ξ(k)) (36)

The spectral function exhibits sharp peaks at energies corresponding to one-particle exci-
tations matching the dispersion relation. As we will see later, this quantity can be measured
directly in experiments. We interpret this quantity as a probability to find a one-particle
excitation with frequency ω and momentum k. Therefore we expect the following relation
to hold (known as sum rule) ∫ +∞

−∞
A(k, ω)dω = 1 (37)

4.2 Interacting Green’s function and spectral function

In the presence of interactions between particles, the evolution operator will bring about
a decomposition on the spectrum of excited states of the system. As a result the scalar
product will not be a mere phase factor with constant amplitude. Rather, its amplitude will
decrease as a function of time. A characteristic form of this decrease is an exponential decay.
This describes the loss of coherence of the wave function brought about by interactions.
After a characteristic time (lifetime), the one-particle excitation loses any resemblance to
the free electron. The most simple form of interacting Green’s function is

G(k, t) = −iθ(t)e−iξ(k)te−t/τ (38)

to be compared with the non-interacting case

G0(k, t) = −iθ(t)e−iξ(k)t (39)

The spectral function gauges the weight of each excited state of the decomposition and takes
in this simple case the form of a Lorentzian peak

A(k, ω) =
1

π

1/τ

(ω − ξ(k))2 + (1/τ)2
(40)

to be compared with the non-interacting case

A0(k, ω) = δ(ω − ξ(k)) (41)

In more general terms, the Green’s function for an interacting problem can be written as

G(k, ω) =
1

ω − ξ(k)− Σ(k, ω) + i0+
(42)

12
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Σ(k, ω) is called the self-energy. It is, in general, a function of momentum and frequency.
Its computation is a central problem in many-body theory as it accounts for the effects of
interactions.

The corresponding spectral function is

A(k, ω) = − 1

π

ImΣ(k, ω)

(ω − ξ(k)− ReΣ(k, ω))2 + (ImΣ(k, ω))2
(43)

The self-energy contains all the information necessary in order to characterize the effect of
interactions on the single-particle excitation spectrum. It is in general a complex quantity,
with a real and an imaginary part and a dependence on momentum and frequency.

We will now describe the information contained in the real and imaginary part of the
self energy separately.

4.3 Imaginary part of the self-energy: lifetime

We will now assume that the real part of the self-energy is zero in order to highlight the
information contained in its imaginary part. Moreover, we will assume that the dependence
of this quantity on momentum and frequency is sufficiently weak that we can consider it
as a constant. In this approximation the spectral function reads:

A(k, ω) = − 1

π

ImΣ

(ω − ξ(k))2 + (ImΣ)2
(44)

By comparing this form with the simplest form of spectral function for the interacting
problem

A(k, ω) =
1

π

1/τ

(ω − ξ(k))2 + (1/τ)2
(45)

we identify the imaginary part of the self-energy as a generalization of the lifetime

1/τ = −ImΣ (46)

4.4 Real part of the self-energy: effective mass and quasiparticle residue

We will now assume that the imaginary part of the self-energy is zero, in order to highlight
the information contained in its real part. In this approximation, the spectral function
reads

A(k, ω) = δ(ω − ξ(k)− ReΣ(k, ω)) (47)

From this equation, we understand that the effect of the real part of the self-energy is to
shift the position of the peak. This affects directly the dispersion relation of the interacting
electrons and therefore has significant physical consequences. The new dispersion relation
ϵ(k) is defined as

ϵ(k) = ξ(k) + ReΣ(k, ω = ϵ(k)) (48)

13
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In order to proceed with the calculation we will assume the simplest form of non-interacting
dispersion relation: isotropic and well approximated by the one of free electrons (m = me =
9.1 · 10−31Kg).

ξ(k) =
k2 − k2F
2m

(49)

In general m can already be affected by the band structure of the material.
Since we are only interested in excitations close to the Fermi energy, it is useful to

approximate the dispersion with a linear form. A first order Taylor expansion of the free
dispersion around the Fermi energy reads

ξ(k) ≃ kF
m

(k − kF ) (50)

The same dispersion for the renormalized dispersion is

ϵ(k) ≃ kF
m∗ (k − kF ) (51)

We are now in a position to find a quantitative relation between the real part of the self-
energy and the renormalisation of the electron mass m/m∗. In order to do so, it is useful
to compute dϵ(k)/dk.

dϵ(k)

dk
=

dξ(k)

dk
+

∂ReΣ(k, ω)

∂k

∣∣∣∣
ω=ϵ(k)

+
∂ReΣ(k, ω)

∂ω

∣∣∣∣
ω=ϵ(k)

dϵ(k)

dk
(52)

By direct computation we find
dξ(k)

dk
=

kF
m

(53)

and
dϵ(k)

dk
=

kF
m∗ (54)

Substituting these two expressions in equation 52, we obtain the relation

kF
m∗ =

kF
m

+
∂ReΣ(k, ω)

∂k

∣∣∣∣
ω=ϵ(k)

+
kF
m∗

∂ReΣ(k, ω)

∂ω

∣∣∣∣
ω=ϵ(k)

(55)

which can be used to compute m/m∗

m

m∗ =

1 + m
kF

∂ReΣ(k,ω)
∂k

∣∣∣
ω=ϵ(k)

1− ∂ReΣ(k,ω)
∂ω

∣∣∣
ω=ϵ(k)

(56)

This is an important result as it gives us a microscopic mechanism for understanding why
many interacting quantum particles exhibit thermodynamic responses that resembles the
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ones of free electrons with vastly different masses. This argument forms the microscopic
basis for supporting a Fermi liquids description of metals.

There is a second important effect generated by the real part of the self-energy. In
order to highlight it, we need to express the spectral function in terms of the renormalized
dispersion. This can be obtained by using the following relation for the δ distribution

δ(ϕ(x)) =
∑
i

1

|ϕ′(xi)|
δ(x− xi) for ϕ(xi) = 0 (57)

Applying this formula we obtain

A(k, ω) = δ(ω − ξ(k)− ReΣ(k, ω)) = (58)

=
1

∂
∂ω (ω − ξ(k)− ReΣ(k, ω))

∣∣
ω=ϵ(k)

δ(ω − ϵ(k)) = Zkδ(ω − ϵ(k)) (59)

Remarkably, instead of obtaining a relation for the spectral function of the form A ∼
δ(ω − ϵ(k)) we have found

A(k, ω) = Zkδ(ω − ϵ(k)) (60)

The quantity

Zk =
1

1− ∂ReΣ(k,ω)
∂ω

∣∣∣
ω=ϵ(k)

(61)

is known as the quasiparticle residue. Remembering equation 56, we find the following
relation valid in the limit in which the momentum dependence of the real part of the self-
energy is small compared to the energy dependence (which in practice is relevant for many
situation).

m

m∗ ≃ Zk (62)

m∗ =

(
1− ∂ReΣ

∂ω

∣∣∣∣
ω=ϵ(k)

)
m (63)

We previously introduced the sum rule (equation 37). Zk is in general a number smaller
than 1. Therefore an energy dependence of the real part of the self-energy causes the spec-
tral weight of an excitation to be less than 1. This is an important realization: interactions
have transformed only part of the spectral weight of an electron into a new excitation with
a different dispersion relation and a heavier mass.

The results of our calculations are summarized in figure 4
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Figure 4: Summary of the quantities used in order to describe many-body effects in solids
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