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Lecture notes on elements of band theory and

thermodynamics of the Fermi gas
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1 Fermi gas

A Fermi gas is an idealised model of N non-interacting electrons confined in a volume
V = L3 that we can use as a starting point to describe, in a first approximation, some
thermodynamic properties of the delocalised electrons found in metallic solids (Cu, Ag,
Fe, Al etc.). Neglecting all interactions with the crystalline lattice, impurities, other elec-
trons, etc., the non-relativistic single-electron wavefunctions satisfy the time-independent
Schroedinger equation

− ℏ2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
ψ(r) = − ℏ2

2m
∇2ψ(r) = ϵψ(r) (1)

Whenever we are interested in bulk solid properties, it is useful to consider periodic
boundary conditions

ψ(x+ L, y, z) = ψ(x, y, x) (2)

ψ(x, y + L, z) = ψ(x, y, x) (3)

ψ(x, y, z + L) = ψ(x, y, x) (4)

By direct computation, we can verify that the following wavefunction is a solution to
the Schroedinger equation (V = L3)

ψk(r) =
1√
V
eik·r (5)

with energy

ϵ(k) =
ℏ2k2

2m
(6)

The vector k conveniently labels wavefunctions by their wavevector k = 2π/λ, associ-
ated with the de Broglie wavelength λ = h/p and momentum p. The periodic boundary
conditions

eikxx = eikx(x+L) (7)

eikyy = eiky(y+L) (8)

eikzz = eikz(z+L) (9)

limit the set of k vectors labelling a valid solution of the Schroedinger equation, to a subset
that satisfies the condition

eikxL = eikyL = eikzL = 1 (10)
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We remember that ez = 1 only for z = m(2πi), with m being an integer number (m ∈ Z).
Therefore the electronic states of the Fermi gas are limited to wavevectors of the form

kx = mx
2π

L
(11)

ky = my
2π

L
(12)

kz = mz
2π

L
(13)

with mx, my and mz as integer numbers. In k-space (reciprocal space) these vectors form
a regular grid with spacing 2π/L (see the figure below for a 2D representation).

kx

ky

}
}2π/Lx

2π/Ly

k-space volume
per state

allowed state
in k-space

The density of (allowed) states in k-space is therefore (number of allowed states/volume)

1/(2π/L)3 =
V

(2π)3
(14)

In the continuous limit this reads

d3N

dk3
=

V

(2π)3
(15)
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Importantly, this result for the density in k-space turns out to be valid also in the presence
of a periodic potential, as we will see below. N electrons in their ground state will fill these
levels according to the Pauli exclusion principle (at most two electrons in each level con-
sidering their spin quantum number) starting from the lowest in energy and progressively
occupying higher energy levels up to kF , the Fermi wavevector.

In k-space the quantum states of a free electron system occupy a sphere of volume
VFS = (4/3)πk3F : states within this sphere are occupied and states outside the sphere are
unoccupied (also known as the Fermi sea, as illustrated in the figure below).

kx

ky

k(ε)

kx

ε(k)

ε

By using the result of eq. 14 we can calculate the number of states occupied by an
electron gas with Fermi wavevector kF (2 x volume occupied by the state x density, the
factor 2 accounts for the spin degeneracy):

N = 2

(
4πk3F
3

)(
V

(2π)3

)
=

k3F
3π2

V (16)

We have come to a very important result: in an electron gas the density n = N/V is

4



University of Geneva Designer Quantum Materials Lab

related to the Fermi wavevector by the relation

n =
k3F
3π2

= 2
VFS
(2π)3

(17)

This is a beautiful and surprising result and we urge you to memorise it. Let’s reflect on
its meaning using a concrete example. Cu has a molar mass of 63.546 g mol−1. This means
that in 1 gram of Cu we find 9.47·1021 atoms (NA = 6.022 ·1023 mol−1). The density of Cu
being 8.96 g/cm3, results in an atomic density of Cu of 8.49·1022 cm−3 =8.49·1028 m−3.
In a typical metal each atom contributes with one electron to the Fermi gas responsible
for its conducting properties. Therefore, we can take as electron density for the Fermi gas
idealisation of the delocalised electrons in Cu, n = 8.49 · 1028 m−3. The Fermi wavevector
is related to the kinetic energy of the electron of highest energy by

ϵF =
ℏ2k2F
2m

(18)

Plugging in the numbers for Cu we find, for the highest kinetic energy of free electrons in
their ground state (T = 0), ϵ = 7 eV, an astonishingly large number.

As we will see later, electrons occupying states in the vicinity of the Fermi energy mostly
account for the thermodynamic properties of the Fermi gas. Here we have underscored that,
even in their ground state, these electrons have kinetic energies associated with velocities of
the order vF ∼ 106m/s. A military rifle delivers bullets flying at a velocity of about 103m/s.
In ordinary metals in their ground state (the lowest possible energy state, reached at the
coldest temperatures) we find electrons with velocities a thousand times faster than these
bullets, as fast as a few percent of the speed of light. We have taken the concrete example
of Cu (EF = 7 eV) but the same considerations are valid for other common metals such
as Ag (5.5 eV), Fe (11.1 eV) or Al (11.7 eV). These numbers are in stark contrast with the
expectations of classical statistical mechanics that assigns kinetic energies to the particles
of an ideal gas at temperature T of the order (3/2)kBT , vanishing in the low temperature
limit.

As a consequence of the quantum nature of electrons (in this particular case the quan-
tisation of the action in unit of h and of the Pauli exclusion principle), even a piece of
ordinary metal has some amazing properties.
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2 Density of states

A very important concept in condensed matter physics is the one-electron density of states,
often indicated as DOS (density of states) or g(ϵ). It is defined as the density of levels per
unit of volume and energy1: (see the figure below for a 2D representation)

g(ϵ) =
1

V

dN(ϵ)

dϵ
(19)

with

N(ϵ) = 2

∫ k=k(ϵ)

0

dN(k)

dk
dk (20)

kx

ky

k(ε) k(ε+δε)

‘Density of states’:
change in number of
occupied states vs ε

N occupied states
below wavevector
k with energy ε

On the surface it can appear just as a somewhat useful computational device, as it allows
us to reformulate the integration in k-space of some functions of energy into an integration
using the energy as a continuous variable. Indeed ϵ and k will be connected by a well-
behaved dispersion relation that will allow us to calculate k(ϵ) and perform this operation.
Apart from computational aspects, the DOS is full of important physical information on
a condensed matter system, as it tells us about the amount of available quantum states in
a given energy range. This is a typical quantity probed in experiments such as scanning
tunneling spectroscopy, photoemission spectroscopy and other tools that will be discussed
during the course. The calculation (and measurement) of the DOS for real condensed

1not to be confused with the density of states in k-space discussed above
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matter systems (that is, going beyond the free electron approximation considered here) is
a central problem of theoretical (experimental) condensed matter physics. Its definition
will be extended in the following lectures to include interacting electron systems. Here it
is important to note that, even for a free Fermi gas, dimensionality is key.

For a 3D electron gas (V3D = L3) we have

N3D(ϵ) = 2

∫
|k|<kF

V

(2π)3
dk = 2

∫ √
2mϵ/ℏ2

0

V

(2π)3
4πk2dk =

V

π2
1

3

(
2mϵ

ℏ2

)3/2

(21)

g3D(ϵ) =
d

dϵ
N3D(ϵ)/V =

1

2π2
(2m)3/2

ℏ3
√
ϵ (22)

In a 2D electron gas (V2D = L2) we have

N2D(ϵ) = 2

∫
|k|<kF

L2

(2π)2
dk = 2

∫ √
2mϵ/ℏ2

0

L2

(2π)2
2πkdk =

L2

π

1

2

(
2mϵ

ℏ2

)
=
L2

π

mϵ

ℏ2
(23)

g2D(ϵ) =
d

dϵ
N2D(ϵ)/L2 =

m

πℏ2
(24)

Finally in 1D (V1D = L) we find

N1D(ϵ) = 2

∫
|k|<kF

L

2π
dk = 2

L

π

√
2mϵ/ℏ2 (25)

g1D(ϵ) =
d

dϵ
N1D(ϵ)/L =

1

π

√
2m/ℏ2

1√
ϵ

(26)

Please note that
g3D(ϵ) ∝

√
ϵ (27)

g2D(ϵ) ∝ const (28)

g1D(ϵ) ∝ 1/
√
ϵ (29)

Considering density of states in reduced dimensions might feel like a pure intellectual
exercise. In reality, low dimensional electron systems (2D and 1D) can be created in the
lab and are a subject of great interest in condensed matter physics.
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3 Thermodynamic properties of the Fermi gas

At finite temperatures, the probability of occupation of an energy level for a system of
electrons (fermions) is provided by the Fermi distribution:

f(ϵ) =
1

e(ϵ −µ)/kBT + 1
(30)

In this expression µ is the chemical potential, the thermodynamic variable that accounts
for changes in energy related to a change in the number of particles (energy cost of adding
or removing particles). It is in general a temperature dependent quantity that we will
calculate below. Through the Fermi distribution, we are able to compute all relevant
thermodynamic quantities of the free electron gas, for example the specific heat (at constant
volume, u internal energy density) defined as

C =

(
∂u

∂T

)
V

(31)

the magnetic susceptibility or the chemical potential.

3.1 Chemical potential

We have previously seen that the density of available states in k-space is V /(2π)3. There-
fore, in a continuous limit, the internal energy density is given by

u = 2

∫
dk

(2π)3
ϵ(k)f [ϵ(k)] (32)

For clarity, the factor 2 arising from the spin degeneracy is explicitly noted. Using the
density of state we can now write down a simple expression for the internal energy density

u =

∫ ∞

0
g(ϵ)ϵf(ϵ)dϵ (33)

and for the electron density

n =

∫ ∞

0
g(ϵ)f(ϵ)dϵ (34)

Evaluating integrals containing the Fermi distribution is a task that is aided by a mathe-
matical device called Sommerfeld expansion. This is illustrated in details in Ashcroft and
Mermin, Appendix C. In a nutshell: typically one needs to calculate expressions of the
kind ∫ ∞

0
h(ϵ)f(ϵ)dϵ (35)
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Since in most cases h(ϵ) is a slowly varying function around the Fermi energy compared to
the Fermi distribution, the following approximations are generally valid up to order T 2∫ ∞

0
h(ϵ)f(ϵ)dϵ ∼

∫ µ

0
h(ϵ)dϵ+

π2k2BT
2

6

∂h

∂ϵ

∣∣∣∣
ϵ=µ

(36)

as well as ∫ µ

0
h(ϵ)dϵ =

∫ ϵF

0
h(ϵ)dϵ+ (µ− ϵF )h(ϵF ) (37)

Using this methodology, we find for the electron density

n ≃
∫ µ

0
g(ϵ)dϵ+

π2k2BT
2

6

∂g(ϵ)

∂ϵ

∣∣∣∣
ϵ=µ

(38)

Using the equation 37 and replacing µ by ϵF in the terms of order T 2, we obtain

n ≃
∫ ϵF

0
g(ϵ)dϵ+ (µ− ϵF )g(ϵF ) +

π2k2BT
2

6

∂g(ϵ)

∂ϵ

∣∣∣∣
ϵ=ϵF

(39)

The term
∫ ϵF
0 g(ϵ)dϵ counts the electron density in the ground state. When considering a

Fermi gas at constant density this last equation reduces to

(µ− ϵF )g(ϵF ) = −
π2k2BT

2

6

∂g(ϵ)

∂ϵ

∣∣∣∣
ϵ=ϵF

(40)

Therefore the temperature dependence of the chemical potential of a Fermi gas (at constant
electron density) is given by

µ = ϵF −
π2k2BT

2

6

1

g(ϵF )

∂g(ϵ)

∂ϵ

∣∣∣∣
ϵ=ϵF

(41)

Using the conventional 3D expression for the DOS derived above we find

µ = ϵF

[
1−

π2k2BT
2

12ϵ2F

]
(42)

This result is very important. Let’s reflect on its meaning. The chemical potential is found
to be mainly set by the Fermi energy (a constant, temperature-independent parameter,
defined by a fixed electron density) plus a temperature dependent term∝ (kBT/ϵF )

2. As we
have seen before, in most realistic scenarios in which we will consider the Fermi gas picture,
(kBT/ϵF )

2 is a very small number, for Cu at room temperature (kBT/ϵF )
2 ∼ 1.3 · 10−5.

Therefore, in many practical situations and conventional condensed matter systems, the
chemical potential can be approximated as independent of temperature and set by the
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Fermi energy. Here the energy cost that we need to pay in order to add a particle to our
system is naturally set by the Fermi energy, since we are forbidden by the Pauli principle
to occupy states below this edge. For this reason, you will often see in the literature the
term Fermi level being used as a synonym of the chemical potential.

However, there are interesting scenarios in which this approximation breaks down, for
example whenever a chemical potential is in close proximity to a band crossing with a
strong variation of the density of states. This situation may arise in solids characterised
by multiple orbital quantum numbers, as we will discuss below.

3.2 Specific heat

We will now follow the same approach in order to calculate a temperature dependent
internal energy and hence the heat capacity.

u ≃
∫ µ

0
ϵg(ϵ)dϵ+

π2k2BT
2

6

[
µ
∂g(ϵ)

∂ϵ

∣∣∣∣
ϵ=µ

+ g(ϵ)|ϵ=µ

]
(43)

Using the temperature dependence of the chemical potential obtained above, leads to the
simplified expression, valid at constant electron density,

u ≃
∫ ϵF

0
ϵg(ϵ)dϵ+

π2

6
k2BT

2g(ϵF ) (44)

that can be rewritten as

u ≃ u0 +
π2

6
k2BT

2g(ϵF ) (45)

where u0 is a T -independent ground state contribution to the internal energy. Therefore
the specific heat of a Fermi gas, at constant electron density, is given by

C =

(
∂u

∂T

)
V

=
π2

3
k2BTg(ϵF ) (46)

where g(ϵF ) is the density of states found at the Fermi energy. We have outlined a very
important result here. The specific heat is measurable in experiments and relates the
energy added to a condensed matter system to a change in its temperature. What our
result tells us is that, for a Fermi gas, this is entirely determined by the thermal excitations
of electrons above the Fermi energy in a narrow energy window of the order kBT . The sea
of electrons beneath this narrow strip is thermodynamically silent as a consequence of the
Pauli exclusion principle. This result will be used extensively throughout the course.
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4 Electrons in periodic crystals: Bloch’s theorem

4.1 Boundary conditions for periodic crystals and Luttinger theorem

We will now go beyond the Fermi gas analysis and start considering the effects of a periodic
crystal lattice, with T = mxax +myay +mzaz (mi ∈ Z) lattice sites.

− ℏ2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
ψ(r) + V (r)ψ(r) = − ℏ2

2m
∇2ψ(r) + V (r)ψ(r) = ϵψ(r) (47)

with V (r) being a periodic real space function

V (r+T) = V (r) (48)

The solutions of the Schroedinger equation can be expressed as an expansion in plane waves

ψ(r) =
∑
k

Cke
ik·r (49)

with coefficients Ck to be determined. The periodic boundary conditions (compare with the
above discussion for the Fermi gas) limit the set of k vectors contributing to the expansion
to those identified by the condition

ψ(r+Njaj) = ψ(r) =
∑
k

Cke
i(k·r+k·Njaj) =

∑
k

Cke
ik·r (50)

eiNjk·aj = 1 (51)

k · aj = mj
2π

Nj
(52)

withmj being an integer number (mj ∈ Z) and Nj is the total number of unit cells available
in the crystal along the direction j (N = NxNyNz is the total number of unit cells). The
valid solutions of the Schroedinger equation will be labeled by the following collection of
quantum numbers

kx = mx
2π

Nxax
(53)

ky = my
2π

Nyay
(54)

kz = mz
2π

Nzaz
(55)

generalizing the results obtained for the Fermi gas, on the density of allowed states in
k-space

1

(2π)3/(Naxayaz)
=

V

(2π)3
(56)
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or
dN(k)

dk
=

V

(2π)3
(57)

We express this allowed set of vectors as a linear combination of primitive vectors of the
reciprocal space bi defined as

bi · aj = 2πδij (58)

k =
∑

i=x,y,z

mi

Ni
bi (59)

Therefore, within the volume of one primitive cell in reciprocal space (2π/ax × 2π/ay ×
2π/az = N(2π)3/V ) we find a number of allowed states equal to the number of lattice site.
For a generic Fermi surface of volume VFS, the result

N/V = n = 2
VFS
(2π)3

(60)

continues to be valid even in the presence of a periodic potential. It turns out that this
important equation is even more general. According to a central result of many-body
theory, known as Luttinger theorem, this relationship continues to be valid even in the
presence of many-body interactions, provided that the Fermi surface is not broken by
interactions. This concept will be developed in our lecture on Fermi liquid theory. Certain
interactions will lead to the formation of energy gaps at the Fermi surface, invalidating this
argument. We will give a concrete example later in the course, during our investigation
of the superconducting instability. However, if the Fermi surface is simply reshaped by
interactions and not gapped, then it may change its shape but not its volume.

4.2 Bloch’s functions and quasimomentum

The solutions of the Schroedinger equation in the presence of a periodic potential can be
expressed as an expansion in plane waves

ψ(r) =
∑
k

Cke
ik·r (61)

We have already established the constraints imposed by the periodic boundary conditions
on the possible k vectors of this expansion. Bloch’s theorem further constrains the proper-
ties of this expansion, specifying the nature of its coefficients. We call the solutions Bloch’s
functions. They are characterised by the following form:

ψk(r) = uk(r)e
ik·r (62)

As motivated below, the possible vectors k are limited to the first Brillouin zone (the
primitive cell of the reciprocal lattice described above, in 1D

[
−π

a ,
π
a

]
, for simplicity also

12
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called Brillouin zone). These wavefunctions resemble plane waves with one important
difference: the function uk(r) modulates their amplitude with the same periodicity as the
crystal lattice.

uk(r+T) = uk(r) (63)

Therefore, for any translation of the real space lattice spacing T (the basic symmetry
operation of this system), we obtain

ψk(r+T) = eik·Tψk(r) (64)

In other words, the wavefunciton will acquire a phase factor k ·T. We note that the vector
k is defined only modulo (i.e. to within) an arbitrary reciprocal lattice vector G:

ei(k+G)·T = eik·TeiG·T = eik·Tei2πm = eik·T (65)

For this reason, the vector k is also called quasimomentum and the whole expansion of the
wavefunction is limited to the first Brillouin zone. This is a consequence of the discrete
translational lattice symmetry.

4.3 Proof of Bloch’s theorem

We will now outline a basic proof of Bloch’s theorem. As discussed above, the solutions of
the Schroedinger equation are expanded as plane waves

ψ(r) =
∑
k

Cke
ik·r (66)

with coefficients Ck to be determined and constrained by the periodic boundary conditions.
The next step consists in writing the periodic crystal potential as a Fourier expansion

V (r) =
∑
G

VGe
iG·r (67)

with G being the ensemble of reciprocal space vectors and VG the Fourier coefficients of
the expansion.

The objective of our calculation is to find a system of equations for the coefficients
of the expansion Ck that characterise the wavefunctions. In order to do so, we can now
plug the two expansions (for the wavefunction and for the potential) into the Schroedinger
equation, to obtain [

(iℏ∇)2

2m
+
∑
G

VGe
iG·r

]∑
k

Cke
ik·r = ϵ

∑
k

Cke
ik·r (68)

∑
k

ℏ2k2

2m
Cke

ik·r +

(∑
G

VGe
iG·r

)(∑
k

Cke
ik·r

)
= ϵ

∑
k

Cke
ik·r (69)
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∑
k

ℏ2k2

2m
Cke

ik·r +
∑
G,k

VGCke
i(G+k)·r = ϵ

∑
k

Cke
ik·r (70)

We define G+ k = k′

∑
k

ℏ2k2

2m
Cke

ik·r +
∑
G,k′

VGCk′−Ge
ik′·r = ϵ

∑
k

Cke
ik·r (71)

∑
k

eik·r

[(
ℏ2k2

2m
− ϵ

)
Ck +

∑
G

VGCk−G

]
= 0 (72)

Since the plane waves form an orthogonal basis, the only way to satisfy the equation above
is for each term to be individually zero:(

ℏ2k2

2m
− ϵ

)
Ck +

∑
G

VGCk−G = 0 (73)

We write now k = q−G′, where the vector q is limited to the first Brillouin zone and G′

is a vector of the reciprocal space:(
ℏ2(q−G′)2

2m
− ϵ

)
Cq−G′ +

∑
G

VGCq−G′−G = 0 (74)

We translate by one reciprocal space vector G+G′ = G⋆(
ℏ2(q−G′)2

2m
− ϵ

)
Cq−G′ +

∑
G⋆

VG⋆−G′Cq−G⋆ = 0 (75)

We rename the indexes (G′ → G and G⋆ → G′)(
ℏ2(q−G)2

2m
− ϵ

)
Cq−G +

∑
G′

VG′−GCq−G′ = 0 (76)

Please note that we have come to a system of equations for the coefficients Ck of ψ(r). We
have found out that, for each allowed wavevector within the first Brillouin zone (as limited
by the boundary conditions), the coefficients of its expansion are a linear combination of
the type ∑

G′

VG′−GCq−G′ (77)

extending across only vectors of the reciprocal lattice. Therefore, if we choose any value of
q, the corresponding Bloch’s function can be expressed as

ψq(r) =
∑
G

Cq−Ge
i(q−G)·r (78)
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which consists of a plane wave modulated by a periodic function that has the same peri-
odicity as the crystal lattice

ψq(r) = eiq·r
∑
G

Cq−Ge
−iG·r = uq(r)e

iq·r (79)
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5 Tight-binding model

A useful model to characterize the properties of electrons in a solid, taking into account the
interaction with the crystalline lattice, is the tight-binding theory, an approach to compute

the solutions of a general hamiltonian H = p2

2m + V , that describes electrons hopping
between lattice sites in a periodic potential V .

We assume to have N lattice sites and τ orbitals per atomic lattice site. We identify
an electronic state localised at the atomic site n as the state |n⟩. These states can be
represented as so-called Wannier orbitals ϕτ (r), functions that decay spatially very rapidly
around the lattice site and strongly resemble local orbitals. These orbital states are assumed
to be orthonormal (negligible direct overlap between different lattice sites)

⟨n|m⟩ = δnm (80)

and to form a basis set that we can use to expand the electronic wavefunction as a linear
combination of atomic orbitals

|ψ⟩ =
∑
n

cn|n⟩ (81)

We ensure that this wavefunction satisfies Bloch’s theorem (being characterised by the
appropriate translational symmetry)

ψτk(r+T) = eik·Tψτk(r) (82)

by choosing the following form of the expansion

ψτk(r) =
1√
N

∑
T

eik·Tϕτ (r−T) (83)

The factor 1√
N

ensures the normalisation of the states, as shown here:∫
ψ∗
τk(r)ψτk(r)dr = (84)

=
1

N

∑
T

∑
T’

∫
e−ik·Tϕ∗τ (r−T)eik·T’ϕτ (r−T’)dr (85)

=
1

N

∑
T

∑
T’

eik·(T’−T)

∫
ϕ∗τ (r−T)ϕτ (r−T’)dr (86)

=
1

N

∑
T

∑
T’

eik·(T’−T)δ(T−T’) (87)

=
1

N

∑
T

1 =
1

N
N = 1 (88)
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where we used the orthonormality of the Wannier functions (
∫
ϕ∗τ (r)ϕτ (r−T)dr = δ(T)).

We can show that this wavefunction satisfies Bloch’s theorem by direct computation. If
we translate this state by a generic lattice vector T′ we obtain

ψτk(r+T′) =
1√
N

∑
T

eik·Tϕτ (r− (T−T′)). (89)

However, T−T′ = T′′ is another lattice vector, therefore

ψτk(r+T′) =
1√
N

∑
T

eik·Tϕτ (r−T′′) (90)

=
1√
N

∑
T′′

eik·(T
′+T′′)ϕτ (r−T′′) (91)

= eik·T
′ 1√
N

∑
T′′

eik·T
′′
ϕτ (r−T′′) (92)

= eik·T
′
ψτk(r) (93)

showing that, indeed, translational invariance is properly implemented by the choice of
Bloch wavefunction outlined in equation 83.

5.1 Single orbital 1D atomic chain

We will start by describing a one-dimensional (T = nax) hopping model with single orbitals
(τ = 1), directly solving the time-independent Schroedinger equation

− ℏ2

2m

(
∂2

∂x2

)
ψ(x) + V (x)ψ(x) = ϵψ(x) (94)

According to Bloch’s theorem, we should be looking for solutions of the form

ψk(x) =
1√
N

∑
n

eiknaxϕ(x− nax) (95)

This will help us identify the coefficients of the linear combination of atomic orbitals

|ψ⟩ =
∑
n

cn|n⟩ (96)

Here we will directly solve the time-independent Schroedinger equation

H|ψ⟩ = ϵ(k)|ψ⟩ (97)
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for the eigenvalues ϵ(k). The action of the hamiltonian is specified by its matrix elements

Hnm = ⟨n|H|m⟩ = ⟨n| p
2

2m
+ V |m⟩ (98)∑

m

Hnmcm = ϵ(k)cn (99)

We assume that this hamiltonian only allows for hopping over neighbouring lattice sites.
In this scenario we have the following matrix elements:

⟨n|H|m⟩ = ητ for n = m (100)

⟨n|H|m⟩ = t for n = m± 1 (101)

⟨n|H|m⟩ = 0 otherwise (102)

that can be written in the compact form

⟨n|H|m⟩ = ητδnm + t(δnm+1 + δnm−1) (103)

The parameter ητ accounts for the energy associated with electron localisation on the

atomic lattice sites on state τ , while t = ⟨ϕ0| p
2

2m + V |ϕa⟩ describes the energy associated
with hopping through the crystal from site to site. With this choice of parameters we can
solve for the eigenvalues ϵ(k) of the time-independent Schroedinger equation∑

m

Hnmcm = ϵ(k)cn (104)

∑
m

ητδnmcm + t
∑
m

(δnm+1 + δnm−1)cm = ϵ(k)cn (105)

ητ cn + t(cn−1 + cn+1) = ϵ(k)cn (106)

As emphasised previously, the coefficients cn of the wavefunction expansion |ψ⟩ =
∑

n cn|n⟩
are identified by the Bloch form of the solutions

ψτk(r) =
1√
N

∑
T

eik·Tϕτ (r−T) (107)

In one dimension (T = nax, ax being the lattice parameter) and for one orbital, we have

ψk(x) =
1√
N

∑
n

eiknaxϕ(x− nax) (108)

that allows us to identify the coefficients cn as

cn =
eiknax√
N

(109)
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We can now finally solve for the electron dispersion ϵ(k)

ϵ(k)cn = ητ cn + t(cn−1 + cn+1) (110)

ϵ(k)
eiknax√
N

= ητ
eiknax√
N

+ t

(
eik(n−1)ax

√
N

+
eik(n+1)ax

√
N

)
(111)

ϵ(k)
eiknax√
N

=
eiknax√
N

[ητ + t(e−ikax + eikax)] (112)

ϵ(k) = ητ + t(e−ikax + eikax)] (113)

ϵ(k) = ητ + 2t cos(kax) (114)

The 1D dispersion along kx is plotted below for a hopping integral t < 0.

-π/a π/a

-2𝑡

2𝑡 ϵ(k)

k

By reflecting on this picture we can take home some very important points

1. As we have learnt from the Bloch’s theorem, the only portion of k-space that we
should consider is

[
−π

a ,
π
a

]
, the Brillouin zone. Here we find that the allowed elec-

tronic states are distributed in an energy band whose width is W = 4t, set by the
hopping amplitude.

2. For computational simplicity we have considered in our model only a limited subset
of hopping channels leading to the formation of a single band of allowed states. In
real solids we find a number of weakly coupled or decoupled orbital groups that lead
to the formation of various electronic bands separated by band gaps, energy intervals
in which no electronic states are available. The position of the chemical potential
within this landscape of electronic bands separated by gaps will determine whether
the solid behaves as an insulator, semiconductor or a metal.
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3. At the bottom of our energy band the electron dispersion looks a lot like a parabola.
Indeed by Taylor expansion we find

ϵ(k) ∝ ℏ2k2

2m⋆
(115)

with m⋆ = ℏ/2ta2, which strongly resemble the free electron dispersion albeit with
a modified mass. A more general 3D expression for this approximation, valid for
isotropic bands, reads

ϵ(k) ∼ ϵ0 +
ℏ2

2m⋆
(k− k0)

2 (116)

This is telling us something very important: for wavefunctions having long wave-
lengths compared to the crystal spacing, in this particular example states close to
the Γ point (k = 0) of the Brillouin zone, the electron dispersion is well approximated
by a free dispersion with a mass of the electrons renormalised by the hopping integral
t: the stronger the hopping amplitude (stronger interaction, larger matrix element of
the hamiltonian coupling adjacent orbital states) the lighter the Bloch wave will be.

4. The quantum mechanical wave nature of the electrons has a number of interesting
consequences that pertain to transport phenomena. Electron wave packets propagat-
ing in a solid state medium will be characterised by a group velocity

v(k) = ℏ−1∇kϵ(k) (117)

We seek to describe, using the language of Newtonian dynamics (forces leading to
accelerations through an inertial mass), the evolution of wave packets in solids. With
this intent, we write for the work ∆ϵ performed by a force F acting on an electron
for a time ∆t

∆ϵ = Fv∆t (118)

Moreover we can describe the changes in kinetic energy of particles in solids as

∆ϵ =
dϵ

dk
∆k (119)

In the context of parabolic bands we have

dϵ

dk
=
h2k

m
= ℏv (120)

Therefore we obtain two expressions for this quantity that we can equate

∆ϵ = ℏv∆k = Fv∆t (121)
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From this expression we infer a description of force acting on an electron in a solid
in the continuous limit

F = ℏ
dk

dt
(122)

Here, we can also define an effective mass through the expressions

F = m⋆dv

dt
=
m⋆

ℏ
d2ϵ

dtdk
= ℏ

dk

dt
(123)

m⋆(k) = ℏ2
[
∇2

kϵ(k)
]−1

(124)

Note that in this generalised picture the effective mass depends on k and can be
positive or negative. Therefore we should be prepared for some surprising phenomena
in the electrodynamics of solids. The concept of effective mass also gives us a very
practical language to characterise the density of states. For example for a 3D isotropic
parabolic band we can write

N(ϵ) = 2

∫ k=k(ϵ)

0

dN(k)

dk
dk = 2

∫ √
2m⋆(ϵ−ϵ0)/ℏ2

0

V

(2π)3
dk = (125)

= 2

∫ √
2m⋆(ϵ−ϵ0)/ℏ2

0

V

(2π)3
4πk2dk =

V

π2
1

3

[
2m⋆(ϵ− ϵ0)

ℏ2

]3/2
(126)

g(ϵ) =
1

V

dN(ϵ)

dϵ
=

1

2π2

(
2m⋆

ℏ2

)3/2√
ϵ− ϵ0 (127)

that extends our previous result of the density of states of the Fermi gas to this
more general case. Since for a given region of k-space we have a well defined number
of available states (recall our discussion on the periodic boundary conditions), a
rapidly dispersing electron band (high curvature, light effective mass) will result in
the spreading of k levels in a wide energy range (low density of states). On the
contrary, a slowly dispersing electron band (small curvature, heavy effective mass)
will result in the packing of many k levels in a small energy rage. This establishes a
convenient direct link between density of states and effective mass (see figure below).
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5. At the edge of the Brillouin zone we see an interesting flattening of the dispersion.
This fact implies that the electronic state in this region find it difficult to transport
energy (small curvature corresponding to heavy effective masses). At the edge of the
Brillouin zone, we also typically observe the opening of band gaps in the density of
states. Let’s consider an important clue that helps us understand the physical origin
of the band gaps. We ask ourselves: what is so special about the edge of the Brillouin
zone? This is a region of k-space defined as

k = ±1

2
G = ±nπ

a
(128)

where G = 2πn/a is a vector of the reciprocal lattice and n is an integer. In other
words, these k states are integer multiples of a reciprocal space vector. We make an
important step forward by realising that this is the condition for Bragg diffraction
of waves from the crystal lattice. Therefore these states at the edge of the Brillouin
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zone corrispond to electrons that undergo Bragg reflections from the crystal. In a
one dimensional picture, a wave travelling to the left will be reflected into a wave
travelling to the right while a wave travelling to the right will be reflected into a
wave travelling to the left. This process will inevitably lead to the formation of a
standing wave. The most simple standing waves that we can construct from a linear
combination of propagating k states (in a 1D representation) are

ψ+ = eixπ/a + e−ixπ/a = 2 cos(xπ/a) (129)

ψ− = eixπ/a − e−ixπ/a = 2i sin(xπ/a) (130)

Their corresponding densities are

ρ+ = |ψ+|2 ∝ cos2(xπ/a) (131)

ρ− = |ψ−|2 ∝ sin2(xπ/a) (132)

From a direct inspection of these functions, we understand that the wave ψ+ dis-
tributes electron probability density in correspondence with the lattice sites while
the wave ψ− distributes electron probability density between lattice sites. The en-
ergy of the wavefunction ψ+ is obviously lower than ψ−: the negative electron charge
feels the attraction of the ionised lattice sites and sits more comfortably when being
in tune with the crystal. The difference between the energy of these wavefunction
sets the energy scale of the band gap.

In summary, at the edge of the Brillouin zone we are unable to construct propagating
electronic states because of Bragg elastic diffusion. The resulting electronic states in
this region of k space are standing waves. These do not form a continuous of states
but will form a discrete spectrum with wide gaps in between. The energy scale of
these gaps is set by the different electrostatic interaction of these standing waves with
the crystal lattice.

5.2 Single orbital 2D square lattice

We will now describe the tight binding model on a 2D lattice using the occupation number
representation (also known as second quantization). If this formalism is not (yet) known to
you, we encourage you to came back to this final part of the notes later in the course. The
tight-binding hamiltonian reads (V is a periodic potential describing the crystal lattice)

H =
∑
nm

⟨ϕn|
p2

2m
+ V |ϕm⟩c†ncm (133)

Here the operators c†n (cn) create (annihilate) a particle on site n and the ϕn are the
quantum states at site n forming an orthonormal basis (Wannier orbitals). Thanks to this
property we can take advantage of translational invariance

ϕRn(r) = ϕ0(r−Rn) (134)
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allowing us to write the hamiltonian as

H =
∑
nm

⟨ϕ0|
p2

2m
+ V |ϕm⟩c†Rn

cRn+Rm
(135)

where we have a set of on-site matrix elements valid for the whole crystal that we call hop-
ping amplitudes. It is wise to limit the possible hopping channels to the nearest neighbours

t = ⟨ϕ0|
p2

2m
+ V |ϕd⟩ (136)

where d = ±ax,±ay. For isotropic hopping the hamiltonian becomes

H =
∑
n

t c†Rn
(cRn+ax + cRn−ax + cRn+ay + cRn−ay) (137)

This hamiltonian is beautifully descriptive as it allows us to see all the hopping processes
that contribute to the kinetic energy of our electron as it propagates through the crystal
lattice. Unfortunately this hamiltonian is not in a diagonal form and therefore we cannot
directly see at this point its eigenvalues and evaluate the accessible energy levels to our
electrons. At this point, we would like to diagonalise this hamiltonian in order to make its
eigenvalues explicit. In order to do this, we need to use the translational invariance of our
system and transform the creation and annihilation operators in a k-space basis. We seek
a relation between the operator c†r that creates a particle in state ϕr(r1) = δ(r − r1) and

the operator c†k that creates a particle state ϕk(r1) = (1/
√

V )eik·r1 . This takes the general
form of a unitary transformation

c†k =

∫
Wkrc

†
rdr (138)

The matrix elements Wkr can be calculated by creating on the vacuum Φ a state in basis
k and projecting on state r1

⟨r1|c†k|Φ⟩ =
∫
Wkr⟨r1|c†k|Φ⟩dr =

∫
Wkrδ(r− r1)dr =Wkr1 = ϕk(r1) =

1√
V
eik·r1 (139)

Therefore the transformation we are looking for is

c†k =
1√
V

∫
eik·rc†rdr (140)

and by conjugation we obtain the corresponding transformation for annihilation operators

ck =
1√
V

∫
e−ik·rcrdr (141)
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The inverse operators are given by

c†r =
1√
V

∑
k

e−ik·rc†k (142)

and by conjugation

cr =
1√
V

∑
k

eik·rck (143)

Now we are fully equipped in order to diagonalise our tight binding hamiltonian through
the transformation

c†Rn
=

1√
N

∑
k

e−ik·Rnc†k (144)

and

cRm =
1√
N

∑
k′

eik
′·Rmck′ (145)

The volume V is replaced here by a discrete number of sites N . Our tight binding hamil-
tonian becomes diagonal through the following

H =
∑
n

1

N

∑
kk′

e−ik·Rnc†ke
ik′·Rn t

(
eik

′·ax + e−ik′·ax + eik
′·ay + e−ik′·ay

)
ck′ (146)

=
∑
kk′

1

N

∑
n

ei(k
′−k)Rn t

(
eik

′
xa + e−ik′xa + eik

′
ya + e−ik′ya

)
c†kck′ (147)

=
∑
kk′

δkk′ t
(
eik

′
xa + e−ik′xa + eik

′
ya + e−ik′ya

)
c†kck′ (148)

∑
k

t
(
eikxa + e−ikxa + eikya + e−ikya

)
c†kck (149)∑

k

2 t [cos(kxa) + cos(kya)] c
†
kck (150)

We have obtained the diagonal form ∑
k

ϵ(k)c†kck (151)

that highlights the eigenvalues

ϵ(k) = 2 t [cos(kxa) + cos(kya)] (152)

called the dispersion relation. The hopping amplitude t can be calculated for a specific
material-dependent choice of Wannier states and description of the crystal lattice potential,
but here we will limit ourselves to consider it a parameter of our model. It describes the
kinetic energy associated with electron delocalisation through the crystal. In our calcula-
tion we have neglected in the sum the on-site matrix element that only results in a shift of
chemical potential and does not influence the dispersion relation.
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5.3 Single orbital 3D lattice

Having analysed the 1D and 2D cases using two different formalisms, the generalisation to
3D is straightforward. We again consider solutions of the Bloch form

ψτk(r) =
1√
N

∑
T

eik·Tϕτ (r−T) (153)

and we calculate the eigenvalues of the Schroedinger equation by direct computation of the
expectation values of the hamiltonian

ϵ(k) =

∫
ψ∗
τk(r)Hψτk(r)dr (154)

=
1

N

∑
T

∑
T′

∫
e−ik·Tϕ∗τ (r−T)Heik·T

′
ϕτ (r−T′)dr (155)

=
1

N

∑
T

∑
T′

eik·(T
′−T)

∫
ϕ∗τ (r−T)Hϕτ (r−T′)dr (156)

We make use of the invariance for translations of T to rewrite this expression as

=
1

N

∑
T

∑
T′

eik·(T
′−T)

∫
ϕ∗τ (r)Hϕτ (r− (T′ −T))dr (157)

=
1

N

∑
T

∑
T′′

eik·T
′′
∫
ϕ∗τ (r)Hϕτ (r−T′′)dr (158)

=
∑
T′′

eik·T
′′
∫
ϕ∗τ (r)Hϕτ (r−T′′)dr (159)

For the term T′′ = 0 we obtain ∫
ϕ∗τ (r)Hϕτ (r)dr = ητ (160)

Just like discussed before, the parameter ητ accounts for the energy associated with elec-
tron localisation on the atomic lattice sites on state τ . We limit the sum to the nearest
neighbours α

ϵ(k) = ητ +
∑
α

eik·α
∫
ϕ∗τ (r)Hϕτ (r−α)dr (161)

The hopping integral is often indicated with the parameter t(α), leading to our final ex-
pression:

ϵ(k) = ητ +
∑
α

t(α)eik·α (162)
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This equation is very useful as it is the starting point of a typical tight-binding calculation
of the electronic structure of a material with known chemical composition and structure.
The hopping integral t can be derived from a microscopic theory or taken as a parameter to
be adjusted according to experimental data. The experimental methods used for mapping
out the electronic structure of materials will be introduced later in the course.
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