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1 Effective electron-electron interactions

During lectures 6 and 9, we have introduced the concept that elementary interactions in
solids can acquire a non-trivial dependence on temporal (ω) and spatial (k) variables (renor-
malisation of the interactions), that accounts for many-body effects and the emergence of
collective modes. A notable example is the phenomenon of screening, that comes into play
in the description of electron-electron interactions and phonon frequencies in metals. The
potential of a charge Q is screened by the conduction electrons of a metal, according to the
Thomas-Fermi theory (also known as random phase approximation, discussed in lecture
6), as

V (r) =
Q

r
e−kTFr (1)

where λTF = 1/kTF is the Thomas-Fermi screening length, of the order 0.5 to 1 nm in
typical metals. The bare electron-electron interaction

Vbare(r) =
e

4πϵ0

1

r
(2)

that has a momentum dependence

Vbare(k) =
e

4πϵ0

1

k2
(3)

becomes dressed by interactions as

Vdressed(k, ω) =
e

4πϵ0ϵ(k, ω)

1

k2
=
Vbare(k)

ϵ(k, ω)
(4)

as described by the dielectric function ϵ(k, ω).
In the Thomas-Fermi approximation, screening yields the Yukawa potential

V Y(k, 0) =
e

4πϵ0

1

k2 + k2TF

(5)

where it is assumed that screening by conduction electrons occurs instantaneously. In this
case the dielectric function shows no ω dependence:

1

ϵel(k, 0)
=

1

1 +
k2TF
k2

=
k2

k2 + k2TF

(6)

That can be also written as

ϵel(k, 0) = 1 +
k2TF

k2
(7)

Here we want to go beyond this approximation and include also the effects associated
with the dynamics of the crystal lattice (phonons). We approximate the lattice dynamics
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as a collective excitation of positively charged ions (jellium model). In this approximation
we calculate the phonon frequencies of metals starting from their bare plasma frequency

ωplasma ions =
ni(Ze)

2

Miϵ0
(8)

where ni,Mi, Z are the ion density, mass and charge respectively. The presence of the
conduction electrons in a metal, renormalises the Coulomb potential and hence the restoring
force of an ionic lattice, leading to a phonon dispersion ωk

ω2
k =

ω2
plasma ions

ϵel(k, 0)
=
ω2
plasma ions

k2 + k2TF

k2 (9)

This can be approximated at small momenta as

ωk ≃
ωplasma ions

kTF
k = vsoundk (10)

The dielectric function for the ionic lattice can be well approximated as a momentum-
independent quantity, with a temporal dependence representing the plasma response

ϵion(0, ω) = 1−
ω2
plasma ions

ω2
(11)

This quantity accounts for the finite response time of a lattice polarisation, typically
bounded by the Debye frequency (in the 100 fs range).

We now want to compute a general form for the renormalisation of an electron-electron
interaction potential in the presence of 1) polarisation of the ionic potential and its re-
tarted screening and 2) instantaneous and momentum dependent electronic screening. As
introduced above, the renormalised potential is related to the bare potential by the total
dielectric function

Vdressed(k, ω) = Vbare(k)/ϵ(k, ω) (12)

The electronic system screens the combined action of the bare potential and ionic potential

Vdressed(k, ω) = (Vbare + Vion)/ϵ
el(k, 0) (13)

while the ion system screens the bare potential supplemented by the electron polarisation

Vdressed(k, ω) = (Vbare + Vel)/ϵ
ion(0, ω) (14)

By adding the last two equations and substracting the previous one, we come to

Vdressed = Vbare + Vel + Vion =
[
ϵel(k, 0) + ϵion(0, ω)− ϵ(k, ω)

]
Vdressed (15)
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which implies
ϵ(k, ω) = ϵel(k, 0) + ϵion(0, ω)− 1 (16)

By substituting we find the total dielectric function

ϵ(k, ω) = 1 +
k2TF

k2
−
ω2
plasma ions

ω2
=

(
1 +

k2TF

k2

)(
1−

ω2
k

ω2

)
(17)

This allows us to write the dressed electron-electron interaction as

Vdressed(k, ω) =
e

4πϵ0ϵ(k, ω)

1

k2
=

e

4πϵ0

1

k2TF + k2

(
1 +

ω2
k

ω2 − ω2
k

)
(18)

or

Vdressed(k, ω) =
e

4πϵ0

1

k2TF + k2
+

e

4πϵ0

1

k2TF + k2
ω2
k

ω2 − ω2
k

(19)

The first term represents the renormalised Coulomb repulsion while the second term repre-
sents an electron-phonon mediated interaction. The second term involves the dynamics of
phonons with ωk describing the phonon dispersion, bounded by the Debye frequency ωD.

Importantly, we have found that, for frequencies below the cut-off of the phonon spec-
trum ωD, the interaction is attractive. In this regime the polarisation of the lattice can be
described as an oscillator excited below its resonance, therefore oscillating in-phase with
the electron and providing a singular attractive contribution at the lattice resonance ωk.
For frequencies above the characterisitic phonon frequency (Debye), the effective interac-
tion is repulsive. The lattice is driven above its resonance and oscillates out of phase with
the electron, making the electron repulsion even more effective than the bare Coulomb
interaction.

Based on this result, we express the effective electron-electron interaction as a two-body
potential

Hint =
1

2V

∑
kk′

∑
σ,σ′

Vkk′c†kσc
†
−kσ′c−k′σ′ck′σ (20)

with

Vkk′ =
e

4πϵ0

1

q2TF + q2
+

e

4πϵ0

1

q2TF + q2
ω2
q

ω2 − ω2
q

(21)

and q = k− k′

2 Instability of the Fermi liquid

In this section we want to introduce a very important concept: the instability of the Fermi
liquid in the presence of an attractive interaction between electrons (Cooper instability).
We have seen previously that a Fermi liquid is a state of matter that is smoothly connected
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Figure 1: Phonon dispersion limited by the Debye frequency.
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Figure 2: Effective electron-electron interaction
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Figure 3: One-square well and two-square well models

to the free Fermi gas by perturbation theory. We are able to define a perturbative expansion
in powers of the interaction that connects wave functions and eigenenergies of the Fermi
gas to those of an interacting Fermi liquid.

In contrast, we can find many-body systems with scattering mechanisms that lead to
divergent perturbative expansions in the interaction strength V starting from the Fermi
gas. They can be responsible for an instability of the (quasi) free electron gas and a phase
transition towards an entirely different state of matter.

Our first step will be to demonstrate that, if there is a scattering mechanism that leads
to an effective attractive interaction between pairs of electrons V , then, no matter how
small this attractive interaction might be, the Fermi liquid is not the ground state of the
electron system. Another state of matter is characterised by a lower energy ∆.

We will first restrict ourselves to the case of a two-electron wavefunction and compute
a relation ∆(V ) by solving the Schroedinger equation. If we can show that ∆ > 0, we will
have uncovered an instability of the Fermi liquid (there is a paired state that is always
energetically favourable compared to the unpaired configuration). We will then consider
the case of a many-particle system by diagonalising the Bardeen, Cooper and Schrieffer
(BCS) hamiltonian in the mean field approximation using a canonical transformation. This
analysis will allow us to account for the ground state and excited states of a superconductor
in the weak coupling limit (g(EF )V ≪ 1).

The following scenario was originally formulated by Cooper (Physical Review 104, 1189
(1956)) and it is known as the Cooper problem. Let’s consider two electrons located just
outside the Fermi sphere, not interacting with the other electrons, banished from the inside
of the Fermi sphere by the Pauli exclusion principle but interacting with each other through
a potential V (r1, r2). The Schroedinger equation for their two-electron wave function
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Figure 4: Phase space for interacting electrons above the Fermi surface

ψ(r1, r2) reads

− ℏ2

2m

(
∇2

1 +∇2
2

)
ψ(r1, r2) + V (r1, r2)ψ(r1, r2) = ϵψ(r1, r2) (22)

According to our definition of the change in ground state energy outlined above (∆), it is
instructive to rewrite it as

− ℏ2

2m

(
∇2

1 +∇2
2

)
ψ(r1, r2) + V (r1, r2)ψ(r1, r2) = ϵψ(r1, r2) = (2EF −∆)ψ(r1, r2) (23)

where ∆ is the energy gain obtained from the pair formation with respect to the energy
without interaction, in which each electron has energy of the order EF .

We will show that for an arbitrarily weak attractive interaction the two electrons will
form a bound state (∆ > 0). In the section above, we have discussed the nature of
the effective electron-electron interaction in metals, that shows an attractive behaviour
for energies below the characteristic Debye frequency ωD. The two electrons interact by
exchanging phonons, therefore energy conservation limits the possible phase space available
for interactions to a spherical shell between EF and EF + ℏωD. We also know that their
total momentum must be conserved

K = k1 + k2 (24)

limiting further the phase space to the intersection between two spherical shells as illus-
trated in the figure above. The volume of this phase space is maximised for K = 0,
therefore we restrict ourselves to interacting electrons with opposite momenta1.

k1 = −k2 = k (25)

1Note that we cannot exclude a priori the possibility of finite-momentum pairing. There are examples
of exotic superconductors where this scenario is considered.
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For V = 0 (non interacting case) we have

ψ0(r1, r2) =

(
1√
V
eik1·r1

)(
1√
V
eik2·r2

)
=

1

V
eik·(r1−r2) = ψ0(r1 − r2) (26)

We note that the spatial part of the wave function is symmetric with respect to the exchange
of particle. In order for the total wave function to be antisymmetric with respect to the
exchange of particle, the spin part must be a singlet.

χa =
1√
2
(| ↑1, ↓2⟩ − | ↓1, ↑2⟩) (27)

For V ̸= 0 (interacting case) we can expand the two-electron wave function as

ψ(r1 − r2) =
1

V

∑
k

C(k)eik·(r1−r2) (28)

Since we are dealing with attractive interactions, the lowest energy solution will be ex-
panded by terms of the kind cos[k · (r1 − r2)] (having maximum amplitude for bonding
states). These are spatially symmetric wave functions, therefore the above consideration
on the spin of the pair still holds.

Without loss of generality we will use the coordinate r = r1 − r2

ψ(r) =
1

V

∑
k

C(k)eik·r (29)

Plugging these expansions into the Schroedinger equation we obtain

− ℏ2

2m
∇2

1

∑
k

C(k)eik·r− ℏ2

2m
∇2

2

∑
k

C(k)eik·r+V (r)
∑
k

C(k)eik·r = (2EF −∆)
∑
k

C(k)eik·r

(30)
ℏ2

m

∑
k

C(k)k2eik·r + V (r)
∑
k

C(k)eik·r = (2EF −∆)
∑
k

C(k)eik·r (31)

We now make use of the Fourier transform
∫
V e

−ik′·rdr

ℏ2

m

∑
k

C(k)k2
∫

V
ei(k−k′)·rdr+

∑
k

C(k)

∫
V
V (r)e−i(k′−k)·rdr = (2EF−∆)

∑
k

C(k)

∫
V
ei(k−k′)·rdr

(32)
We know the following relation for the Fourier transform∫

V
drei(k−k′)·r = V δ(k− k′) = V δkk′ (33)
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which leads to

ℏ2

m

∑
k

C(k)k2V δkk′ +
∑
k

C(k)V (k′ − k) = (2EF −∆)
∑
k

C(k)V δkk′ (34)

where V (k − k′) = Vkk′ is the Fourier transform (or matrix elements) of the interaction
potential

ℏ2k′2

m
V C(k′) +

∑
k

C(k)V (k′ − k) = (2EF −∆)V C(k′) (35)

We are free to exchange the indexes as

ℏ2k2

m
C(k) +

1

V

∑
k′

C(k′)V (k− k′) = (2EF −∆)C(k) (36)

We need now to specify a form for the interaction potential. We have calculated an approx-
imated form of effective Vkk′ in the previous section which is in principle correct but hard
to treat analytically. Cooper proposed to use as a simple approximation for the interaction
a constant, k-independent attraction active only within the top spherical shell bounded by
the Debye frequency (see see figure 3, Cooper, Phys. Rev. 104, 1189 (1956)).

Vkk′ = −V < 0 for kF < [k, k′] <

√
2m(EF + ℏωD)

ℏ2
(37)

Vkk′ = 0 everywhere else (38)

where V > 0.

We define as kshell the set of wavevectors k such as kF < k <
√

2m(EF+ℏωD)
ℏ2 . Thanks

to this hypothesis on the form of the interaction and to the Pauli principle we can restrict
the expansion C(k) to k ∈ kshell and impose

C(k) = 0 for k < kF (39)

and

C(k) = 0 for k >

√
2m(EF + ℏωD)

ℏ2
(40)

Accordingly, we will limit the summation as

ℏ2k2

m
C(k)− V

V

∑
k′∈kshell

C(k′) = (2EF −∆)C(k) (41)

A = V
V

∑
k′∈kshell

C(k′) is a constant number independent on k(
−ℏ2k2

m
−∆+ 2EF

)
C(k) = −A (42)
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We are not interested in an explicit calculation of the wavefunctions, rather to gain insight
on the relation between eigenenergies and interaction strength. Therefore we will sum up
the remaining k dependence of the expansions and aim to isolate a form ∆(V ).∑

k

C(k) = A
∑
k

1
ℏ2k2

m −∆+ 2EF

(43)

1 =
V

V

∑
k

1
ℏ2k2

m −∆+ 2EF

(44)

Since the sum only depends on k2, we can easily transform the discrete k summation into
an energy integral using the density of states g(ϵ) and ϵ = ℏ2k2

2m

1

V

∑
k

... → 2︸︷︷︸ ∫ ... g(ϵ)dϵ (45)

spin degeneracy
resulting in

1 = 2V

∫ EF+ℏωD

EF

g(ϵ)dϵ

2ϵ+∆− 2EF
(46)

In most conventional metals we can safely assume that g(ϵ) varies weakly around EF ,
allowing us to perform the variable change η = ϵ− EF and reduce the integral to

1 = g(EF )V

(
2

∫ ℏωD

0

dη

2η +∆

)
(47)

2

∫ ℏωD

0

dη

2η +∆
= 2

1

2

∫ 2ℏωD

0

d(2η)

2η +∆
= ln

2ℏωD +∆

0 +∆
= ln

(
1 +

2ℏωD

∆

)
(48)

We can now solve for ∆(V )

1

g(EF )V
= ln

(
1 +

2ℏωD

∆

)
(49)

e
1

g(EF )V = 1 +
2ℏωD

∆
(50)

∆ =
2ℏωD

e
1

g(EF )V − 1
(51)

In the weak coupling limit (coupling constant λ = g(EF )V ≪ 1, valid for elemental super-
conductors) we find

∆ ≃ 2ℏωDe
− 1

g(EF )V = 2ℏωDe
− 1

λ > 0 (52)
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We have demonstrated that, for an arbitrarily small and crude attractive interaction, two
electrons living at the edge of the Fermi sphere will always form a bound state. We call this
bound state a Cooper pair. We can reasonably extend our pairing interaction to all other
electrons at the edge of the Fermi sphere and argue that in the presence of an arbitrarily
weak two-body attractive intreraction at the edge of the Fermi sphere, the Fermi gas is not
the ground state of a metal. This instability will lead to the formation of a great number
of electron pairs with opposite momenta and singlet spins, that form bound states gaining
an energy ∆, known as energy gap.

The characteristic spatial size of Cooper pairs, the coherence length, can be estimated
from the quantization of the action δpδx ≃ ℏ (see exercises). We know that pairs are formed
by electrons in a layer ±∆ around the edge of the Fermi sphere, so we find characteristic
size of the Cooper pair is

δx ≃ ℏ
δp

≃ ℏvF
∆

=
4 · 10−15 eV s× 106 m s−1

10−3 eV
∼ 10−6 ÷ 10−7 m (53)

We note that this number is much larger than the crystalline unit cell: Cooper pairs
should not be imagined as localised atom-like electron pairs. They are, rather, correlations
between pairs of wavefunctions that extend over large distances (Al 1600 nm, Pb 80 nm,
SrTiO3 70 nm).

As we will see below, this scenario based on a two-body pairing is our best current
theoretical starting point for describing the superconducting state in the weak coupling
limit. Importantly, we have seen that the energy gap ∆ is not an analytic function of the
interaction V (or the coupling constant λ), therefore the state of matter we are investigat-
ing cannot be connected to the Fermi gas (or liquid) by a perturbative expansion. This
fact underscores the failure of perturbation theory to provide a description of the super-
conducting state and highlights the need for a different theoretical starting point. A mean
field analysis will give us the necessary tools to make progress.

3 BCS mean-field hamiltonian

We wish to extend our analysis from a two-electron scenario to the case of a many-body
system. We consider the hamiltonian with a two-body interaction:

H =
∑
kσ

ξ(k)c†kσckσ +
1

2V

∑
kk′

Vkk′c†k↑c
†
−k↓c−k′↓ck′↑ (54)

Since we have understood that perturbation theory is not an appropriate tool for the prob-
lem at hand, we need to elaborate a different approach for finding approximate solutions.
In a mean-field approximation, we consider the operators A and B and their product AB.
We rewrite the operators as their thermodynamic average ⟨⟩ plus a fluctuation term

A = ⟨A⟩+ δA (55)
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B = ⟨B⟩+ δB (56)

AB = ⟨A⟩⟨B⟩+ ⟨A⟩δB + ⟨B⟩δA+ δAδB (57)

We assume that the fluctuations around the average are small and neglect the term
quadratic in the fluctuations

δAδB ∼ 0 (58)

Replacing the fluctuations as δA = A− ⟨A⟩ and δB = B − ⟨B⟩ we come to the expression

AB = ⟨A⟩B + ⟨B⟩A− ⟨A⟩⟨B⟩ (59)

In the BCS mean-field approximation we choose A = c†k↑c
†
−k↓ and B = c−k′↓ck′↑ leading to

HBCS =
∑
kσ

ξ(k)c†kσckσ+ (60)

1

2V

∑
kk′

Vkk′

(
⟨c†k↑c

†
−k↓⟩c−k′↓ck′↑ + ⟨c−k′↓ck′↑⟩c

†
k↑c

†
−k↓ − ⟨c†k↑c

†
−k↓⟩⟨c−k′↓ck′↑⟩

)
We can simplify this expression by denoting the average terms as

∆k = − 1

2V

∑
k′

Vkk′⟨c−k′↓ck′↑⟩ (61)

∆∗
k = − 1

2V

∑
k′

Vkk′⟨c†
k′↑c

†
−k′↓⟩ (62)

leading to

HBCS =
∑
kσ

ξ(k)c†kσckσ −
∑
k

∆∗
kc−k↓ck↑ −

∑
k

∆kc
†
k↑c

†
−k↓ (63)

=
∑
k

[
ξ(k)(c†k↑ck↑ + c†k↓ck↓)−∆∗

kc−k↓ck↑ −∆kc
†
k↑c

†
−k↓

]
The last term (−∆∗

k∆k/V ) has been omitted as being constant. Its role will be discussed
separately. It is noteworthy that HBCS does not conserve the number of particles. When
expressed in this form, it becomes apparent that pairs of fermions can be created (c†k↑c

†
−k↓)

or annihilated (c−k↓ck↑) out of and into a reservoir. This suggests that we should look
for a ground state characterised by an uncertainty in the particle number. A widely used
many-particle state with such property is the coherent state.
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4 BCS ground state as a coherent state of Cooper pairs

The great intuition of Schrieffer in 1957 was to describe the ground state of the mean
field hamiltonian HBCS as a coherent state of electron pairs, known now as the BCS
wavefunction.

|ΨBCS
0 ⟩ = C exp

(∑
k

αkc
†
k↑c

†
−k↓

)
|0⟩ = (64)

= C
∏
k

exp
(
αkc

†
k↑c

†
−k↓

)
|0⟩ (65)

= C
∏
k

[
1 + αkc

†
k↑c

†
−k↓ +

1

2!

(
αkc

†
k↑c

†
−k↓

)2
+

1

3!

(
αkc

†
k↑c

†
−k↓

)3
+ ...

]
|0⟩ (66)

where |0⟩ is the vacuum, αk a complex parameter and C is a normalisation constant to be

determined. We notice that terms of the kind c†k↑c
†
−k↓c

†
k↑c

†
−k↓ and higher order terms will

always be zero. Therefore we can keep only the first terms of the expansion

|ΨBCS
0 ⟩ = C

∏
k

(
1 + αkc

†
k↑c

†
−k↓

)
|0⟩ (67)

In order to find the normalisation constant, we calculate

⟨0|(1 + α∗
kck↑c−k↓)(1 + αkc

†
k↑c

†
−k↓)|0⟩ = 1 + |αk|2 (68)

Therefore we see that we obtain a normalised state by writing the coherent state as

|ΨBCS
0 ⟩ =

∏
k

(
1

1 + |αk|2
+

αk

1 + |αk|2
c†k↑c

†
−k↓

)
|0⟩ (69)

typically written as

|ΨBCS
0 ⟩ =

∏
k

(
uk + vkc

†
k↑c

†
-k↓

)
|0⟩ (70)

|vk|2 represents the probability that the pair state (k ↑, -k ↓) is occupied, while |uk|2
represents the probability that the pair state (k ↑, -k ↓) is unoccupied. This pair state is
not necessarily a bound Cooper pair.

Historically, Bardeen Cooper and Schrieffer proposed the above wave function as an
educated guess (ansatz in the language of the practitioners) for the ground state of HBCS,
and determined uk and vk using a variational approach (J. Bardeen, L. N. Cooper and
J. R. Schrieffer Phys. Rev. 108, 1175 (1957)). This is not the only example of a Nobel
prize-winning educated guess: creativity is indeed important in science. We will now
follow a less creative but more pedagogical route, starting from the diagonalisation of the
hamiltonian with a canonical transformation. This approach will allows us to obtain the
entire spectrum of excited states, giving us direct access to finite-temperature properties,
that are not available if we limit ourselves to the study of the ground state.
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5 Canonical transformation

The BCS hamiltonian

HBCS =
∑
k

[
ξ(k)(c†k↑ck↑ + c†k↓ck↓)−∆∗

kc−k↓ck↑ −∆kc
†
k↑c

†
−k↓

]
is written in a form that involves only pairs of creation or annihilation operators. It can
be therefore diagonalised, allowing us to uncover both the ground state obtained heuristi-
cally by Schrieffer and the spectrum of elementary excitations, especially relevant at finite
temperatures. In matrix form we have

HBCS =
∑
k

(
c†k↑ c−k↓

)(ξ(k) ∆k

∆∗
k −ξ(k)

)(
ck↑
c†−k↓

)
(71)

We are looking to express it as

HBCS =
∑
kσ

E(k)b†kσbkσ (72)

through a canonical transformation of the fermion operators ck and c†k into a new set of

operators bk and b†k. If we can express the hamiltonian in a diagonal form, the new operators
will represent directly the elementary excitations of the system. A canonical transformation
is a linear transformation that preserves the fermion anticommutation relations. This
approach was originally proposed in 1958 by Bogoliubov (On a new method in the theory of
superconductivity, Nuovo Cimento 7, 794 (1958)) and independently by Valatin (Comments
on the theory of superconductivity, Nuovo Cimento 7, 843 (1958)). The choice of linear
combination is guided by a physical argument: if our elementary excitation take fermions
in and out of a many-body state constituted by bound pairs, exciting one particle leaves
a partner behind, also in an excited state. Therefore, the elementary excitation of one
particle also requires the annihilation of its partner. This leads us to the Bogoliubov-
Valatin transformation

bk↑ = u∗kck↑ − vkc
†
−k↓ (73)

b†−k↓ = v∗kck↑ + ukc
†
−k↓ (74)

or in matrix form (
bk↑
b†-k↓

)
=

(
u∗k −vk
v∗k uk

)(
ck↑
c†−k↓

)
(75)

We require this transformation to be unitary, therefore(
u∗k −vk
v∗k uk

)
= |uk|2 + |vk|2 = 1 (76)
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The unitary transformation can be inverted straightforwardly(
ck↑
c†−k↓

)
=

(
uk vk
−v∗k u∗k

)(
bk↑
b†-k↓

)
= U

(
bk↑
b†-k↓

)
(77)

The form we have taken for the unitary transformation also guarantees its canonical prop-
erty (anticommutator preserving). In order to verify this fact, we can directly compute

{b†k↑, bk↑} = 1:

{b†k↑, bk↑} = {ukc†k↑ − v∗kc−k↓, u
∗
kck↑ − vkc

†
−k↓} = (78)

= uku
∗
kc

†
k↑ck↑ − ukvkc

†
k↑c

†
−k↓ − v∗ku

∗
kc−k↓ck↑ + v∗kvkc−k↓c

†
−k↓+

u∗kukck↑c
†
k↑ − vkukc

†
−k↓c

†
k↑ − u∗kv

∗
kck↑c−k↓ + vkv

∗
kc

†
−k↓c−k↓

= |uk|2{ck↑, c†k↑} − ukvk{c†k↑, c
†
−k↓} − v∗ku

∗
k{c−k↓, ck↑}+ |vk|2{c−k↓, c

†
−k↓} = 1

We can make use of the prescribed anticommutators:

{ck↑, c†k↑} = 1 (79)

{c†k↑, c
†
−k↓} = 0 (80)

{c−k↓, ck↑} = 0 (81)

{c−k↓, c
†
−k↓} = 1 (82)

to verify that indeed our new operators b describe fermions. Now we are ready to diagonalise
the mean-field BCS hamiltonian

HBCS =
∑
k

(
c†k↑ c−k↓

)(ξ(k) ∆k

∆∗
k −ξ(k)

)(
ck↑
c†−k↓

)
(83)

=
∑
k

(
c†k↑ c−k↓

)
UU †

(
ξ(k) ∆k

∆∗
k −ξ(k)

)
UU †

(
ck↑
c†−k↓

)

=
∑
k

(
b†k↑ b−k↓

)(E(k)↑ 0
0 −E(k)↓

)(
bk↑
b†−k↓

)
The coefficients of the Bogoliubov transformation can be calculated by solving the eigen-
values equation (

ξ(k) ∆k

∆∗
k −ξ(k)

)(
uk
vk

)
= λ↑,↓k

(
uk
vk

)
(84)(

ξ(k)− λ↑,↓k ∆k

∆∗
k −ξ(k)− λ↑,↓k

)(
uk
vk

)
= 0 (85)
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det

(
ξ(k)− λ↑,↓k ∆k

∆∗
k −ξ(k)− λ↑,↓k

)
= 0 (86)

which has two solutions

λ↑,↓k = ±
√
ξ(k)2 +∆2

k (87)

Therefore we have found the eigenvalues (we take the physical positive solutions)

E↑,↓
k =

√
ξ(k)2 +∆2

k (88)

We can now express the BCS hamiltonian in the form

HBCS =
∑
k

√
ξ(k)2 +∆2

k

(
b†k↑bk↑ + b†-k↓b-k↓

)
(89)

In systems with the symmetries ξ(k) = ξ(-k) and ∆k = ∆-k we arrive to the most simple
diagonal formulation of the BCS hamiltonian

HBCS =
∑
kσ

√
ξ(k)2 +∆2

k

(
b†kσbkσ

)
=
∑
kσ

E(k)b†kσbkσ (90)

We now want to calculate the coefficients of the transformation, contained in the eigenvec-
tors. Substituting the solutions into the eigenvalues equation we now find

ξ(k)uk +∆kvk = uk

√
ξ(k)2 +∆2

k (91)

∆kuk − ξ(k)vk = vk

√
ξ(k)2 +∆2

k (92)

Some algebra leads to

uk (ξ(k)uk +∆kvk) = uk

(
uk

√
ξ(k)2 +∆2

k

)
(93)

vk (∆kuk − ξ(k)vk) = vk

(
vk

√
ξ(k)2 +∆2

k

)
(94)

Substracting the two equations above we come to

ξ(k)(u2k + v2k) =
√
ξ(k)2 +∆2

k(u
2
k − v2k) (95)

Remembering that
u2k + v2k = 1 (96)
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0 kF

1

k

|uk|2

|vk|2

0 kF
k

Ek

= 0

0hole-like

electron-like

Figure 5: Excitation spectrum of the BCS mean field model. Excitations are electron-like
above kF and hole-like below kF. When ∆ ̸= 0 the excitations in the vicinity of the gapped
region of the spectrum are a superposition of electron and hole.

we find

|uk|2 =
1

2

1 +
ξ(k)√

ξ(k)2 +∆2
k

 (97)

|vk|2 =
1

2

1− ξ(k)√
ξ(k)2 +∆2

k

 (98)

We saw before that |vk|2 represents the probability that the pair state (k ↑, -k ↓) is occu-
pied, while |uk|2 represents the probability that the pair state (k ↑, -k ↓) is unoccupied.

Here we see that uk and vk also represent the weight of electron-like and hole-like
character of the excitations of the BCS state (the Bogoliubov quasiparticles). |uk|2 gives
the probability that an excitation would be an electron if its charge is measured, and |uk|2
gives the probability that an excitation would be a hole if its charge is measured.
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6 Bogoliubov quasiparticles

Let’s start by analysing the elementary excitations of the BCS state, known as Bogoliubov
quasiparticles. These are not to be confused with Landau quasiparticle, the elementary
excitations of the Fermi liquid. It is instructive to reflect on the physical meaning and
some limiting cases of the excitation spectrum of the BCS mean-field hamiltonian. We will
consider the example of elementary excitations of the kind b†k↑. If we excite the system far
above the Fermi energy (remember that in our definitions ξ(k) = 0 at kF ) and far above
the gap (k states for which ξ(k) ≫ ∆k) we find

E(k) ≈ ξ(k) , uk ≈ 1 , vk ≈ 0 (99)

b†k↑ = ukc
†
k↑ − v∗kc−k↓ ≈ c†k↑ (100)

In this limiting case, the Bogoliubov quasiparticle looks a lot like an electron.
Similarly, if we excite the system far below the Fermi energy and far below the gap (k

states for which ξ(k) ≪ −|∆k|) we find uk ≈ 0 , vk ≈ 1. The Bogoliubov quasiparticle
looks a lot like a hole.

The most spectacular effects are observed in the vicinity of the Fermi surface, close to
the energy gap. Excitations precisely at kF (ξ(k) = 0) are characterised by

E(kF ) = ∆ , uk =
1√
2
, vk =

1√
2

(101)

b†k↑ =
1√
2
c†k↑ −

1√
2
c−k↓ (102)

Bogoliubov quasiparticles in the vicinity of the gapped region of the spectrum are a super-
position of electron and hole with the same amplitude.

7 BCS ground state as a vacuum of Bogoliubov quasiparti-
cles

In the case of the Fermi gas, with hamiltonian

HFG =
∑
kσ

ϵ(k)c†kσckσ (103)

we build the ground state |ΨFG
0 ⟩ from the vacuum |0⟩ up to the Fermi wave vector kF as

|ΨFG
0 ⟩ =

kF∏
kσ

c†kσ|0⟩ =
kF∏
k

c†k↑c
†
-k↓|0⟩ (104)
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In analogy with the Fermi gas, in the case of the BCS hamiltonian

HBCS =
∑
kσ

E(k)b†kσbkσ (105)

we want to build the ground state |ΨBCS
0 ⟩ from the vacuum |0⟩ as

|ΨBCS
0 ⟩ =

∏
k

bk↑b-k↓|0⟩ (106)

This is an appropriate construction of the ground state because it builds a wave function
for which the occupation number of Bogoliubov quasiparticles is guaranteed to be zero

⟨ΨBCS
0 |b†kσbkσ|Ψ

BCS
0 ⟩ = 0 (107)

or equivalently that that |ΨBCS
0 ⟩ is a vacuum state of Bogoliubov quasiparticles

bkσ|ΨBCS
0 ⟩ = 0 (108)

In order to demonstrate this, we notice that

bk′σ|ΨBCS
0 ⟩ = bk′σ

∏
k

bk↑b-k↓|0⟩ = 0 (109)

for any kσ, b2kσ = 0.
Using the Bogoliubov-Valatin transformation

bk↑ = u∗kck↑ − vkc
†
−k↓ (110)

b−k↓ = vkc
†
k↑ + u∗kc−k↓ (111)

we can rewrite the ground state wave functions in terms of the original BCS formulation
based on c†k↑c-k↓ operators

|ΨBCS
0 ⟩ =

∏
k

bk↑b-k↓|0⟩ =
∏
k

(
u∗kck↑ − vkc

†
−k↓

)(
vkc

†
k↑ + u∗kc−k↓

)
|0⟩ (112)

=
∏
k

(
u∗kvkck↑c

†
k↑ + |uk|2ck↑c−k↓ − |vk|2c†-k↓c

†
k↑ − v∗kukc

†
-k↓c-k↓

)
|0⟩

=
∏
k

(
u∗kvkck↑c

†
k↑ − |vk|2c†-k↓c

†
k↑

)
|0⟩

=
∏
k

(
u∗kvk + |vk|2c†k↑c

†
-k↓

)
|0⟩
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=
∏
k

vk

(
u∗k + vkc

†
k↑c

†
-k↓

)
|0⟩

In order to normalise our ground state wave function it is useful to see that

= ⟨0|(uk + v∗kc-k↓ck↑)(u
∗
k + vkc

†
k↑c

†
-k↓)|0⟩ (113)

= ⟨0|
(
|uk|2 + ukvkc

†
k↑c

†
-k↓ + v∗ku

∗
kc-k↓ck↑ + |vk|2c-k↓ck↑c†k↑c

†
-k↓

)
|0⟩

|uk|2 + |vk|2 = 1

Therefore the normalised BCS ground state wavefunction is

|ΨBCS
0 ⟩ =

∏
k

(
u∗k + vkc

†
k↑c

†
-k↓

)
|0⟩ (114)

For uk real, this expression becomes

|ΨBCS
0 ⟩ =

∏
k

(
uk + vkc

†
k↑c

†
-k↓

)
|0⟩ (115)

with

uk =

√√√√√1

2

1 +
ξ(k)√

ξ(k)2 +∆2
k

 (116)

vk =

√√√√√1

2

1− ξ(k)√
ξ(k)2 +∆2

k

 (117)

8 Gap equation

We want to calculate the gap function that we defined previously as

∆k = − 1

2V

∑
k′

Vkk′⟨c−k′↓ck′↑⟩ (118)

We are interested in computing this thermodynamic average using the appropriate spec-
trum of eigenstates that we have already obtained. Therefore, we use again the Bogoliubov
transformation in order to express the average explicitly as a function of our elementary
excitations

∆k = − 1

2V

∑
k′

Vkk′⟨(−vk′b†
k′↑ + uk′b−k′↓)(uk′bk′↑ + vk′b†−k′↓)⟩ = (119)
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− 1

2V

∑
k′

Vkk′

[
−vk′uk′⟨b†

k′↑bk′↑⟩ − v2k′⟨b†k′↑b
†
−k′↓⟩+ u2k′⟨b−k′↓bk′↑⟩+ uk′vk′⟨b−k′↓b

†
−k′↓⟩

]
We notice that our spectrum is formed by Bogoliubov fermions (characterised by a Fermi

Dirac statistic), whose number operator is of the form b†
k′↑bk′↑ with dispersion E(k) =√

ξ(k)2 +∆2
k. Therefore we see that

⟨b†
k′↑b

†
−k′↓⟩ = 0 (120)

⟨b−k′↓bk′↑⟩ = 0 (121)

but thermal averaging of the number operator of our fermions will yield a Fermi-Dirac
distribution f(E(k))

⟨b†
k′↑bk′↑⟩ = f(E(k′)) =

1

1 + eE(k′)/kT
(122)

⟨b−k′↓b
†
−k′↓⟩ = 1− f(E(k′)) = 1− 1

1 + eE(k′)/kT
(123)

Using this expression we come to the gap equation:

∆k = − 1

2V

∑
k′

Vkk′uk′vk′
(
1− 2f(E(k′)

)
(124)

We note that

ukvk =
1

2

∆k√
ξ(k)2 +∆2

k

(125)

Allowing us to write

∆k = − 1

2V

∑
k′

Vkk′
1

2

∆k′√
ξ(k′)2 +∆2

k′

(
1− 2f(E(k′)

)
= − 1

2V

∑
k′

Vkk′
∆k′

2E(k′)

(
1− 2f(E(k′)

)
(126)

We remember that the Fermi distribution can be expressed as

f(E(k′)) =
1

2

(
1− tanh

E(k′)

2kT

)
(127)

which leads to the nice and compact form of the gap equation

∆k = − 1

2V

∑
k′

Vkk′
∆k′

2E(k′)
tanh

(
E(k′)

2kT

)
(128)

Note that this is an equation of the kind ∆k(T ) = F (∆k(T )) and it needs to be solved
numerically in order to obtain ∆(T ). A qualitative form for the solution of a k-independent
gap is shown in figure.
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Figure 6: Temperature dependence of the gap

Importantly, this equation will have solutions only for V < 0, that is attractive inter-
actions (self-consistency condition). This equation is often rewritten as the linearised gap
equation, assuming the Cooper approximation for the form of the attractive interaction
discussed above (also known as the BCS one-square-well model, see figure 3)

∆ = − 1

2V
V∆

∑
k′

1

2E(k′)
tanh

(
E(k′)

2kT

)
(129)

1 = − 1

2V
V
∑
k′

1

2E(k′)
tanh

(
E(k′)

2kT

)
(130)

which in the continuous limit reads

1 = −V
∫ ℏωD

−ℏωD

dE
g(E)

2E
tanh

(
E

2kT

)
(131)

1 = −g(EF )V

∫ ℏωD

−ℏωD

dE
1

2E
tanh

(
E

2kT

)
= −g(EF )V ln

(
1.14ℏωD

kT

)
(132)

kTc = 1.14ℏωDe
−1/g(EF )V = 1.14ℏωDe

−1/λ (133)

We have come to a fundamental result: a relationship between material dependent pa-
rameters that identifies the superconducting critical temperature from a mean field self-
consistency condition. The same approach can be utilised in describing other second order
phase transitions, such as the mean field analysis of the Curie transition for ferromagnets.
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At T = 0 we find

1 = −g(EF )V

∫ ℏωD

0
dE

1√
E2 +∆2

= −g(EF )V sinh
ℏωD

∆
(134)

∆ ≈ 2ℏωDe
−1/g(EF )V = 1.764kTC (135)

In a model that approximates more closely the effective electron-electron interaction (two-
square-well model, see figure 3), by parametrizing the screened Coulomb interaction µ⋆ we
find

kTc = 1.14ℏωDe
− 1

λ−µ⋆ (136)

with
µ⋆ =

µ

1 + µ ln
(

EF
ℏωD

) (137)

and
µ = g(EF )VCoulomb (138)

In the BCS model we have found

Tc ∝ ωD ∝M−1/2 (139)

with M the isotopic mass. We define the isotope effect parameter α as

α = − d lnTc
d lnM

(140)

which can be experimentally measured. In the simple BCS model we would therefore have
α = 1/2. Using the two-square model, we find that this is an upper limit. Indeed we see

lnTc = const + ln ℏωD − 1

λ− µ⋆
(141)

leading to

α =
1

2

[
1−

(
µ⋆

λ− µ⋆

)]
(142)

9 BCS density of states

The density of states of Bogoliubov quasiparticles is calculated using the expression:

gBCS(E) =
1

V

∑
k

δ(E − E(k)) =
1

V

∑
k

δ

(
E −

√
ξ2(k) + ∆2

k

)
(143)
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In the continuous limit and and for a k-independent gap this reads

gBCS(E) =

∫ +∞

−∞
gn(E)δ

(
E −

√
ξ2 +∆2

)
dξ (144)

where gn(E) is the density of states in the normal state. We use again the approximation
of quasi-constant gn(E) around the Fermi energy, to write

gBCS(E) ≃ gn(EF )

∫ +∞

−∞
δ
(
E −

√
ξ2 +∆2

)
dξ (145)

In order to compute this quantity we need to use the following property of the δ
distribution

δ [f(x)] =
∑
xi

δ(x− xi)

|df(xi)
dx |

(146)

where the sum extends over all the solutions xi of the equation f(x) = 0. In our current
case we have

δ [f(ξ)] = δ
[
E −

√
ξ2 +∆2

]
(147)

df

dξ
= − ξ√

ξ2 +∆2
(148)

The solutions of f(ξ) = 0 are ξ1,2 = ±
√
E2 −∆2 We can then write

δ [f(x)] =
δ
(
ξ −

√
E2 −∆2

)
√
E2−∆2

E

+
δ
(
ξ +

√
E2 −∆2

)
√
E2−∆2

E

(149)

gBCS(E) ≃ gn(EF )
E√

E2 −∆2

∫ +∞

−∞
δ
(
ξ −

√
E2 −∆2

)
+ δ

(
ξ +

√
E2 −∆2

)
dξ (150)

= gn(EF )
2E√

E2 −∆2
if |E| > ∆ (151)

= 0 if −∆ < E < ∆
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Figure 7: Gapped density of states at T=0
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